×

The Radon Nikodym property and multipliers of \(\mathcal{HK}\)-integrable functions. (English) Zbl 1451.28010

The aim of the paper is the study of multipliers of Henstock-Kurzweil (shortly, HK) integrable functions in a commutative Banach algebra \(X\) with identity of norm one.
It is proved that if \(X\) has the Radon-Nikodym property, then any \(X\)-valued function of strong bounded variation is a multiplier mapping the space \(\mathcal{SHK}\) of strongly HK-integrable functions into itself.
It is then seen that, under the same assumptions on \(X\), if \(f\) is HK-integrable and \(g\) has strong bounded variation (both \(X\)-valued), then there exists \(h\in \mathcal{SHK}\) such that \[ \tau(fg)=\tau(h) \] for every multiplicative linear functional \(\tau\) of the Banach algebra.
Moreover, when \(X\) has the weak Radon-Nikodym property, the same is available with \(h\) Henstock-Kurzweil-Pettis integrable.

MSC:

28B05 Vector-valued set functions, measures and integrals
26A39 Denjoy and Perron integrals, other special integrals
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] B. Bongiorno, L. Di Piazza and K. Musial,A variational Henstock integral characterization of the Radon-Nikodym property, Illinois J. Math.,53(1) (2009), 87-99. · Zbl 1200.46021
[2] B. Bongiorno, L. Di Piazza and K. Musial,A characterization of the weak Radon-Nikodym property by finitely additive interval functions, Bull. Aus. Math. Soc.,80(2009), 476-485. · Zbl 1186.46046
[3] S. Cao,The Henstock integral for Banach valued function, SEA Bull. Math.,16(1)(1992), 35-40. · Zbl 0749.28007
[4] J. Diestel and J. J. Uhl,Vector Measures, Amer. Math. Soc. Mathematical Surveys,15(1977). · Zbl 0369.46039
[5] L. Di Piazza and V. Marraffa,The McShane, PU and Henstock integrals of Banach valued functions, Czech. Math. Jour.,52(127)no. 3, (2002) 609-633. · Zbl 1011.28007
[6] L. Di Piazza, V. Marraffa and K. Musial,Variational Henstock integrability of Banach space valued functions, Math. Bohem.,141(2)(2016), 287-296. · Zbl 1413.26019
[7] Lee Peng Yee,Lanzhou Lectures on Henstock integration, Series in Real Analysis Vol.2, World Scientific Singapore (1989). · Zbl 0699.26004
[8] Lee Tuo-Yeong,Henstock-Kurzweil integration on Euclidean spaces, Ser. Real Anal.,12, World Scientific Publishing Co., Singapore, (2011) · Zbl 1246.26002
[9] Lee Tuo-Yeong,A characterisation of multipliers for the HenstockKurzweil integral, Math. Proc. Camb. Phil. Soc.,138(2005), 487-492. · Zbl 1078.28004
[10] V. Marraffa,A descriptive characterization of the variational Henstock integral, Matimyas Mathematica,22(2)(1999), 73-84. · Zbl 1030.28005
[11] V. Marraffa,A characterization of strongly measurable Kurzweil-Henstock integrable functions and weakly continuous operators, J. Math. Anal. Appl.,340(2)(2008), 1171-1179. · Zbl 1141.46021
[12] V. Marraffa,Strongly measurable Kurzweil-Henstock type integrable functions and series, Quaestiones Mathematicae,31(4)(2008), 379-386. · Zbl 1177.28030
[13] K. Musial,Topics in the theory of Pettis integration, Rend. Instit. Mat. Univ. Trieste,23(1991), 177-262. · Zbl 0798.46042
[14] W. Rudin,Real and Complex Analysis, Third edition, McGraw Hill International edition (1987). · Zbl 0925.00005
[15] Stefa´n Schwabik and Ye Guoju,Topics in Banach Space Integration, Series in Real Analysis,10, World Scientific, (2005).
[16] S.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.