×

zbMATH — the first resource for mathematics

A parameter choice rule for Tikhonov regularization based on predictive risk. (English) Zbl 07211714
MSC:
47A General theory of linear operators
44A Integral transforms, operational calculus
65 Numerical analysis
65J Numerical analysis in abstract spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Avron H and Toledo S 2011 Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix J. ACM58 17 · Zbl 1327.68331
[2] Bauer F and Hohage T 2005 A Lepskij-type stopping rule for regularized Newton methods Inverse Problems21 1975-91 · Zbl 1091.65052
[3] Bauer F and Kindermann S 2008 The quasi-optimality criterion for classical inverse problems Inverse Problems24 035002 20 · Zbl 1143.65043
[4] Bertero M and Boccacci P 1998 Introduction to Inverse Problems in Imaging (Bristol: IOP Publishing) · Zbl 0914.65060
[5] Craven P and Wahba G 1978/79 Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation Numer. Math.31 377-403 · Zbl 0377.65007
[6] Deledalle C-A, Vaiter S, Fadili J and Peyré G 2014 Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection SIAM J. Imaging Sci.7 2448-87 · Zbl 1361.94012
[7] Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer)
[8] Galatsanos N P and Katsaggelos A K 1992 Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation IEEE Trans. Imag. Proc.1 322-36
[9] Golub G H, Heath M and Wahba G 1979 Generalized cross-validation as a method for choosing a good ridge parameter Technometrics21 215-23 · Zbl 0461.62059
[10] Hämarik U, Palm R and Raus T 2009 On minimization strategies for choice of the regularization parameter in ill-posed problems Numer. Funct. Anal. Optim.30 924-50 · Zbl 1189.65123
[11] Hämarik U and Raus T 2009 About the balancing principle for choice of the regularization parameter Numer. Funct. Anal. Optim.30 951-70 · Zbl 1188.65078
[12] Hanke M and Raus T 1996 A general heuristic for choosing the regularization parameter in ill-posed problems SIAM J. Sci. Comput.17 956-72 · Zbl 0859.65051
[13] Hansen P C 1987 The truncated SVD as a method for regularization BIT27 534-53 · Zbl 0633.65041
[14] Hansen P C 1992 Analysis of discrete ill-posed problems by means of the L-curve SIAM Rev.34 561-80 · Zbl 0770.65026
[15] Hansen P C 1999 Regularization tools version 3.0 for Matlab 5.2 Numer. Algor.20 195-6 · Zbl 0933.65065
[16] Hansen P C and O’Leary D P 1993 The use of the L-curve in the regularization of discrete ill-posed problems SIAM J. Sci. Comput.14 1487-503 · Zbl 0789.65030
[17] Hansen P C and Saxild-Hansen M 2012 AIR-tools—a MATLAB package of algebraic iterative reconstruction methods J. Comput. Appl. Math.236 2167-78 · Zbl 1241.65042
[18] Hutchinson M F 1990 A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines Comm. Stat. Simul. Comput.19 433-50 · Zbl 0718.62058
[19] Ito K and Jin B 2015 Inverse Problems: Tikhonov Theory and Algorithms (Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd)
[20] Ito K and Jin B 2019 Regularized linear inversion with randomized singular value decomposition arXiv:1909.01947
[21] Ito K, Jin B and Takeuchi T 2011 A regularization parameter for nonsmooth Tikhonov regularization SIAM J. Sci. Comput.33 1415-38 · Zbl 1235.65054
[22] Jin B and Lorenz D A 2010 Heuristic parameter-choice rules for convex variational regularization based on error estimates SIAM J. Numer. Anal.48 1208-29 · Zbl 1215.65100
[23] Kindermann S 2011 Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems Electron. Trans. Numer. Anal.38 233-57 · Zbl 1287.65043
[24] Kindermann S and Neubauer A 2008 On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization Inverse Problems Imaging2 291-9 · Zbl 1165.47009
[25] Kindermann S, Pereverzyev S Jr and Pilipenko A 2018 The quasi-optimality criterion in the linear functional strategy Inverse Problems34 075001 24 · Zbl 1415.65131
[26] Landweber L 1951 An iteration formula for Fredholm integral equations of the first kind Am. J. Math.73 615-24 · Zbl 0043.10602
[27] Lepskiŕ O V 1990 A problem of adaptive estimation in Gaussian white noise Teor. Veroyatnost. Primen.35 459-70 · Zbl 0725.62075
[28] Levin E and Meltzer A Y 2017 Estimation of the regularization parameter in linear discrete ill-posed problems using the Picard parameter SIAM J. Sci. Comput.39 A2741-62 · Zbl 1378.65117
[29] Li H and Werner F 2018 Empirical risk minimization as parameter choice rule for general linear regularization methods Ann.l’Institut Henri Poincaré Prob. Stat. arXiv:1703.07809
[30] Lucka F, Proksch K, Brune C, Bissantz N, Burger M, Dette H and Wübbeling F 2018 Risk estimators for choosing regularization parameters in ill-posed problems—properties and limitations Inverse Problems and Imaging12 1121-55 · Zbl 06945044
[31] Lukas M A, De Hoog F R and Anderssen R S 2012 Performance of robust GCV and modified GCV for spline smoothing Scand. J. Stat.39 97-115 · Zbl 1246.62110
[32] Mallows C L 1973 Some comments on cp Technometrics15 661-75 · Zbl 0269.62061
[33] Mathé P 2006 The Lepskiŕ principle revisited Inverse Problems22 L11-5 · Zbl 1095.65045
[34] Mathé P and Pereverzev S V 2003 Geometry of linear ill-posed problems in variable Hilbert scales Inverse Problems19 789-803 · Zbl 1026.65040
[35] Morozov V A 1984 Methods for Solving Incorrectly Posed Problems (New York: Springer)
[36] Paige C C and Saunders M A 1982 LSQR: an algorithm for sparse linear equations and sparse least squares ACM Trans. Math. Softw.8 43-71 · Zbl 0478.65016
[37] Polyak R A 2018 Complexity of the regularized Newton’s method Pure Appl. Funct. Anal.3 327-47
[38] Ramani S, Blu T and Unser M 2008 Monte-Carlo sure: a black-box optimization of regularization parameters for general denoising algorithms IEEE Trans. Image Process.17 1540-54
[39] Regińska T 1996 A regularization parameter in discrete ill-posed problems SIAM J. Sci. Comput.17 740-9 · Zbl 0865.65023
[40] Stein C M 1981 Estimation of the mean of a multivariate normal distribution Ann. Stat.9 1135-51 · Zbl 0476.62035
[41] Thompson A M, Brown J C, Kay J W and Titterington D M 1991 A study of methods of choosing the smoothing parameter in image restoration by regularization IEEE Trans. Pattern Anal. Mach. Intell.13 326-39
[42] Tihonov A N, Glasko V B and Kriksin J A 1979 On the question of quasi-optimal choice of a regularized approximation Dokl. Akad. Nauk. SSSR248 531-5
[43] Tikhonov A N and Arsenin V Y 1977 Solutions of Ill-Posed Problems. V. H. Winston & Sons, Washington, D.C. (New York: Wiley)
[44] Tikhonov A N and Glasko V B 1965 Use of the regularization method in nonlinear problems USSR Comput. Math. Math. Phys.5 93-107 · Zbl 0189.49501
[45] Vogel C R 1996 Non-convergence of the L-curve regularization parameter selection method Inverse Problems12 535-47 · Zbl 0867.65025
[46] Wahba G 1990 Spline Models for Observational Data (Philadelphia, PA: SIAM) https://doi.org/10.1137/1.9781611970128 · Zbl 0813.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.