×

zbMATH — the first resource for mathematics

An Eulerian multimaterial framework for simulating high-explosive aquarium tests. (English) Zbl 07211837
Summary: Aquarium tests of cylindrical high-explosive charges provide optical data of the detonation front velocity and shape, propagation of the shock wave in the surrounding water, and expansion rates of the detonation products behind the front. Data from aquarium experiments is often used for calibration of reactive burn models based on phenomenological equations of state (EOS) and reaction rate laws. This paper presents a multimaterial numerical modeling framework to solve the 2D axisymmetric reactive Euler equations for high-explosive aquarium tests, in particular for ammonium nitrate-fuel oil (ANFO) explosives. An extension of the Ghost Fluid Method (GFM) is used to handle the dynamic material interfaces for the ANFO explosion products, the charge-confining material (polymethyl methacrylate PMMA), and the surrounding water. This study analyzes the sensitivity of calculations (both computational efficiency and numerical accuracy) to different algorithms for the material interface models including the original GFM versus Riemann solver-based strategies. A novel method for defining the left and right states in the interfacial Riemann problem eliminates the need for sorting or nodal interpolation during the projection along the material interface. Numerical tests indicate that populating the interface node values using the Riemann solution mitigate the overheating error observed in steady-state calculations. Solution convergence and computational efficiency are explored as a function of the spatial and temporal order of the schemes. Results from the computational model with analytical equations of state and fitted reaction rate parameters show very good quantitative agreement with experimentally observed detonation front velocity, reaction products expansion, and shock wave propagation in the surrounding water for a cylindrical ANFO charge encased in PMMA. The proposed modeling framework, in conjunction with experimental tests, provides a reliable tool to assess equations of state and reaction rate expressions for reactive burn models of confined high explosives.
MSC:
76 Fluid mechanics
Software:
HE-E1GODF; JWL++
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jackson, S. I., The dependence of ammonium-nitrate fuel-oil (ANFO) detonation on confinement, Proc Combust Inst, 36, 2, 2791-2798 (2017)
[2] Aslam, T. D.; Bdzil, J. B., Numerical and theoretical investigations on detonation-inert confinement interactions, Proceedings of the twelfth international detonation symposium, 483-488 (2002)
[3] Short, M.; Quirk, J. J., High explosive detonation-confiner interactions, Annu Rev Fluid Mech, 50, 215-242 (2018) · Zbl 1384.76034
[4] Sharpe, G. J.; Braithwaite, M., Steady non-ideal detonations in cylindrical sticks of explosives, J Eng Math, 53, 1, 39-58 (2005) · Zbl 1116.76469
[5] Johnson, J. N.; Mader, C. L.; Goldstein, S., Performance properties of commercial explosives, Propellants Explos Pyrotech, 8, 1, 8-18 (1983)
[6] Lu, J. P.; Dorsett, H.; Kennedy, D. L., Simulation of aquarium tests for PBXW-115, Proceedings of the twelfth symposium (international) on detonation, 11-16 (2002)
[7] Andrews, S. A.; Aslam, T. D., On the direct construction of the steady traveling solution to high explosive sandwich, cylinder and aquarium tests via a streamline finite volume approximation, J Comput Phys, 395, 653-670 (2019)
[8] Fedkiw, R. P.; Aslam, T. D.; Merriman, B.; Osher, S., A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J Comput Phys, 152, 2, 457-492 (1999) · Zbl 0957.76052
[9] Aslam, T. D., A level-set algorithm for tracking discontinuities in hyperbolic conservation laws: I. scalar equations, J Comput Phys, 167, 2, 413-438 (2001) · Zbl 0989.65089
[10] Aslam, T. D., A level set algorithm for tracking discontinuities in hyperbolic conservation laws II: systems of equations, J Sci Comput, 19, 1-3, 37-62 (2003) · Zbl 1081.65083
[11] Liu, T. G.; Khoo, B. C.; Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J Comput Phys, 190, 2, 651-681 (2003) · Zbl 1076.76592
[12] Wang, C. W.; Liu, T. G.; Khoo, B. C., A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J Sci Comput, 28, 1, 278-302 (2006) · Zbl 1114.35119
[13] Menikoff, R., Empirical equations of state for solids, Shock wave science and technology reference library, 2, 143-188 (2007), Springer Berlin Heidelberg
[14] Kirby, I. J.; Leiper, G. A., A small divergent detonation theory for intermolecular explosives, Proceedings of the eighth international detonation symposium (1985)
[15] Sućeska, M.; Braithwaite, M.; Klapötke, T. M.; Stimac, B., Equation of state of detonation products based on exponential-6 potential model and analytical representation of the excess helmholtz free energy, Propellants Explos Pyrotech, 44, 5, 564-571 (2019)
[16] Short, M.; Bdzil, J. B.; Anguelova, I. I., Stability of Chapman-Jouguet detonations for a stiffened-gas model of condensed-phase explosives, J Fluid Mech, 552, 299-309 (2006) · Zbl 1087.76048
[17] Salyer, T. R.; Short, M.; Kiyanda, C. B.; Morris, J. S.; Zimmerly, T., Effect of prill structure on detonation performance of ANFO, Proceedings of the fourteenth international detonation symposium (2010)
[18] Souers, P. C.; Anderson, S.; Mercer, J.; McGuire, E.; Vitello, P., JWL++: a simple reactive flow code package for detonation, Propellants Explos Pyrotech, 25, 2, 54-58 (2000)
[19] Schoch, S.; Nikiforakis, N., Numerical modelling of underwater detonation of non-ideal condensed-phase explosives, Phys Fluids, 27, 1, 016101 (2015)
[20] Lozano, E.; Aslam, T. D.; Petr, V.; Jackson, G. S., Comparing different water equations of state for aquarium tests, Bull Am Phys Soc (2019)
[21] Kirkwood, J. G.; Bethe, H. A., The pressure wave produced by an underwater explosion, basic propagation theory, part I, Tech. Rep. (1942), Office of Scientific Research and Development
[22] Murnaghan, F. D., The compressibility of media under extreme pressures, Proc Natl Acad Sci, 30, 9, 244-247 (1944) · Zbl 0060.42901
[23] Tillotson, J. H., Metallic equations of state for hypervelocity impact, GA Report (1962), General Dynamics, General Atomic Division
[24] Wardlaw, A. B.; Mair, H. U., Spherical solutions of an underwater explosion bubble, Shock Vib, 5, 2, 89-102 (1998)
[25] Marsh, S. P., LASL shock hugoniot data, 5 (1980), University of California Press
[26] Al’tshuler, L. V.; Bakanova, A. A.; Trunin, R. F., Phase transformation during water compression by strong shock waves, Proc USSR Acad Sci, 121, 1, 67-69 (1958)
[27] Skidmore, I. C.; Morris, E., Thermodynamics of nuclear materials, 173-216 (1962), Int Atom Energy Agency
[28] Trunin, R. F.; Gudarenko, L. F.; Zhernokletov, M. V.; Simakov, G. V., Experimental data on shock-wave compression and adiabatic expansion of condensed substances, Tech. Rep. (2001), Inst. Exp. Phys., Russian Federal Nuclear Center
[29] Cole, R. H.; Weller, R., Underwater explosions, Phys Today, 1, 35 (1948)
[30] Ridah, S., Shock waves in water, J Appl Phys, 64, 1, 152-158 (1988)
[31] McQueen, R. G., Selected hugoniot, LASL Report (1969), Los Alamost Scientific Laboratory
[32] Shu, C. W.; Osher, S., 328-374 (1989), Springer
[33] Xu, S.; Aslam, T. D.; Stewart, D. S., High resolution numerical simulation of ideal and non-ideal compressible reacting flows with embedded internal boundaries, Combust Theor Model, 1, 1, 113-142 (1997) · Zbl 1046.80505
[34] LeVeque, R. J., Finite volume methods for hyperbolic problems, 31 (2002), Cambridge University Press · Zbl 1010.65040
[35] Liu, X. D.; Osher, S., Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered grids, J Comput Phys, 142, 2, 304-330 (1998) · Zbl 0941.65082
[36] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J Comput Phys, 227, 6, 3191-3211 (2008) · Zbl 1136.65076
[37] Glaister, P., An approximate linearised Riemann solver for the Euler equations for real gases, J Comput Phys, 74, 2, 382-408 (1988) · Zbl 0632.76079
[38] Shuen, J. S.; Liou, M. S.; Van Leer, B., Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry, J Comput Phys, 90, 2, 371-395 (1990) · Zbl 0701.76076
[39] Hu, X. Y.; Adams, N. A.; Shu, C. W., Positivity-preserving method for high-order conservative schemes solving compressible euler equations, J Comput Phys, 242, 169-180 (2013) · Zbl 1311.76088
[40] Gamezo, V. N.; Oran, E. S., Reaction-zone structure of a steady-state detonation wave in a cylindrical charge, Combust Flame, 109, 1-2, 253-265 (1997)
[41] Losasso, F.; Shinar, T.; Selle, A.; Fedkiw, R., Multiple interacting liquids, ACM Trans Graph, 25, 3, 812-819 (2006)
[42] Merriman, B.; Bence, J. K.; Osher, S. J., Motion of multiple junctions: a level set approach, J Comput Phys, 112, 2, 334-363 (1994) · Zbl 0805.65090
[43] Zhang, X.; Chen, J. S.; Osher, S., A multiple level set method for modeling grain boundary evolution of polycrystalline materials, Interact Multiscale Mech, 1, 2, 178-191 (2008)
[44] Sethian, J. A., A fast marching level set method for monotonically advancing fronts, Proc Natl Acad Sci, 93, 4, 1591-1595 (1996) · Zbl 0852.65055
[45] Aslam, T. D., A partial differential equation approach to multidimensional extrapolation, J Comput Phys, 193, 1, 349-355 (2004) · Zbl 1036.65002
[46] Aslam, T. D.; Luo, S.; Zhao, H., A static PDE approach for multidimensional extrapolation using fast sweeping methods, SIAM J Sci Comput, 36, 6, A2907-A2928 (2014) · Zbl 1315.65093
[47] Zhao, H., A fast sweeping method for Eikonal equations, Math Comput, 74, 250, 603-627 (2005) · Zbl 1070.65113
[48] Luo, S.; Zhao, H., Convergence analysis of the fast sweeping method for static convex Hamilton-Jacobi equations, Res Math Sci, 3, 1, 35 (2016) · Zbl 1356.35094
[49] Fedkiw, R. P.; Marquina, A.; Merriman, B., An isobaric fix for the overheating problem in multimaterial compressible flows, J Comput Phys, 148, 2, 545-578 (1999) · Zbl 0933.76075
[50] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction (2013), Springer Science & Business Media
[51] Hernandez, A. M., Computational modeling of advanced, multi-material energetic materials and systems (2018), University of Illinois at Urbana-Champaign
[52] Houim, R. W.; Kuo, K. K., A ghost fluid method for compressible reacting flows with phase change, J Comput Phys, 235, 865-900 (2013)
[53] Fedkiw, R. P.; Merriman, B.; Osher, S., Efficient characteristic projection in upwind difference schemes for hyperbolic systems: the complementary projection method, J Comput Phys, 141, 1, 22-36 (1998) · Zbl 0932.65093
[54] Schoch, S.; Nikiforakis, N.; Lee, B. J.; Saurel, R., Multi-phase simulation of ammonium nitrate emulsion detonations, Combust Flame, 160, 9, 1883-1899 (2013)
[55] Hwang, P.; Fedkiw, R. P.; Merriman, B.; Aslam, T. D.; Karagozian, A. R.; Osher, S. J., Numerical resolution of pulsating detonation waves, Combust Theor Model, 4, 3, 217-240 (2000) · Zbl 0987.76066
[56] Tarver, C. M.; McGuire, E. M., Reactive flow modeling of the interaction of TATB detonation waves with inert materials, Proceedings of the twelfth international detonation symposium (2002)
[57] Chiquete, C.; Short, M., Characteristic path analysis of confinement influence on steady two-dimensional detonation propagation, J Fluid Mech, 863, 789-816 (2019) · Zbl 1415.76432
[58] Aslam, T. D.; Bdzil, J. B., Numerical and theoretical investigations on detonation confinement sandwich tests, Proceedings of the thirteenth international detonation symposium, 761-769 (2006)
[59] Craig, B. G.; Johnson, J. N.; Mader, C. L.; Lederman, G. F., Characterization of two commercial explosives, Tech. Rep. (1978), Los Alamos Scientific Laboratory
[60] Brown, R. H.; Schneider, S. C.; Mulligan, M. G., Analysis of algorithms for velocity estimation from discrete position versus time data, IEEE Trans Ind Electron, 39, 1, 11-19 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.