zbMATH — the first resource for mathematics

Testing for lack-of-fit in functional regression models against general alternatives. (English) Zbl 1441.62933
Summary: A lack-of-fit test for functional regression models is proposed. The test is based on the fact that checking the no-effect of a functional covariate is equivalent to checking the nullity of the conditional expectation of the error term given a sufficiently rich set of projections of that covariate. The idea then is to search the projection that is, in some sense, the least favorable for the null hypothesis. Finally, it remains to perform a nonparametric check of the nullity of the conditional expectation of the residuals of the regression given the selected least favorable projection. For the search of a least favorable projection and the nonparametric check we use a kernel-based approach. As a result, the test statistic is a quadratic form based on univariate kernel smoothing and the asymptotic critical values are given by the standard normal law. The test is able to detect general departures from the model. The error term of the regression could present heteroscedasticity of unknown form. The law of the functional covariate need not be known. The test could be implemented quite easily and performs well in simulations and real data applications.
62R10 Functional data analysis
62J02 General nonlinear regression
62G10 Nonparametric hypothesis testing
62P35 Applications of statistics to physics
62P10 Applications of statistics to biology and medical sciences; meta analysis
62P30 Applications of statistics in engineering and industry; control charts
fda (R); rp.flm.test
Full Text: DOI
[1] Bierens, H. J., A consistent conditional moment test of functional form, Econometrica, 58, 1443-1458 (1990) · Zbl 0737.62058
[2] Boas, R. P., Inversion of Fourier and Laplace transforms, Amer. Math. Monthly, 69, 10, 955-960 (1962) · Zbl 0192.21802
[3] Bosq, D., Linear processes in function spaces: Theory and applications, (Lecture Notes in Statistics, vol. 149 (2000), Springer-Verlag: Springer-Verlag New-York) · Zbl 0962.60004
[4] Bücher, A.; Dette, H.; Wieczorek, G., Testing model assumptions in functional regression models, J. Multivariate Anal., 102, 10, 1472-1488 (2011) · Zbl 1219.62075
[5] Cai, T.; Hall, P., Prediction in functional linear regression, Ann. Statist., 34, 2159-2179 (2006) · Zbl 1106.62036
[6] Cardot, H.; Ferraty, F.; Mas, A.; Sarda, P., Testing hypotheses in the functional linear model, Scand. J. Stat., 30, 241-255 (2003) · Zbl 1034.62037
[7] Cardot, H.; Goia, P.; Sarda, P., Testing for no effect in functional linear regression models, some computational approaches, Comm. Statist. Simulation Comput., 33, 179-199 (2004) · Zbl 1058.62037
[8] Chen, D.; Hall, P.; Müller, H. G., Single and multiple index functional regression models with nonparametric link, Ann. Statist., 39, 1720-1747 (2011) · Zbl 1220.62040
[9] Crambes, C.; Kneip, A.; Sarda, P., Smoothing splines estimators for functional linear regression, Ann. Statist., 37, 35-72 (2009) · Zbl 1169.62027
[10] Cuesta-Albertos, J. A.; García-Portugués, E.; Febrero-Bande, M.; González-Manteiga, W., Goodness-of-fit tests for the functional linear model based on randomly projected empirical processes, Ann. Statist., 47, 439-467 (2019) · Zbl 1415.62027
[11] Delsol, L.; Ferraty, F.; Vieu, P., Structural test in regression on functional variables, J. Multivariate Anal., 102, 422-447 (2011) · Zbl 1207.62096
[12] Ferraty, F.; Vieu, P., Nonparametric Functional Data Analysis: Theory and Practice (2006), Springer: Springer Berlin · Zbl 1119.62046
[13] García-Portugués, E.; González-Manteiga, W.; Febrero-Bande, M., A goodness-of-fit test for the functional linear model with scalar response, J. Comput. Graph. Statist., 23, 3, 761-778 (2014)
[14] Giné, E.; Latała, R.; Zinn, J., Exponential and moment inequalities for \(U -\) statistics, (High Dimensional II. High Dimensional II, Progr. Probab., vol. 47 (2000), Birkhäuser: Birkhäuser Boston), 13-38 · Zbl 0969.60024
[15] González-Manteiga, W.; Crujeiras, R. M., An updated review of goodness-of-fit tests for regression models, Test, 22, 3, 361-411 (2013) · Zbl 1273.62086
[16] Guerre, E.; Lavergne, P., Data-driven rate-optimal specification testing in regression models, Ann. Statist., 33, 840-870 (2005) · Zbl 1068.62055
[17] Hall, P.; Horowitz, J. L., Methodology and convergence rates for functional linear regression, Ann. Statist., 35, 70-91 (2007) · Zbl 1114.62048
[18] Härdle, W.; Mammen, E., Comparing nonparametric versus parametric regression fits, Ann. Statist., 21, 1296-1947 (1993) · Zbl 0795.62036
[19] Hart, J. D., Nonparametric smoothing and lack-of-fit tests, (Springer Series in Statistics (1997), Springer-Verlag New York) · Zbl 0886.62043
[20] Hilgert, N.; Mas, A.; Verzelen, N., Minimax adaptive tests for the functional linear model, Ann. Statist., 41, 2, 838-869 (2013) · Zbl 1267.62059
[21] Horowitz, J. L.; Spokoiny, V. G., An adaptive, rate-optimal test of a parametric model against a nonparametric alternative, Econometrica, 69, 599-631 (2001) · Zbl 1017.62012
[22] Horváth, L.; Kokoszka, P., Inference for functional data with applications, (Springer Series in Statistics (2012), Springer: Springer New-York) · Zbl 1279.62017
[23] Horvàth, L.; Reeder, R., A test of significance in functional quadratic regression, Bernoulli, 19, 5A, 2020-2051 (2013)
[24] Lavergne, P.; Patilea, V., Breaking the curse of dimensionality in nonparametric testing, J. Econometrics, 143, 103-122 (2008) · Zbl 1418.62199
[25] Mammen, E., Bootstrap and wild bootstrap for high dimensional linear models, Ann. Statist., 21, 255-285 (1993) · Zbl 0771.62032
[26] Müller, H. G.; Stadtmüller, U., Generalized functional linear models, Ann. Statist., 33, 774-805 (2005) · Zbl 1068.62048
[27] Patilea, V.; Sánchez-Sellero, C.; Saumard, M., Testing the predictor effect on a functional response, J. Amer. Statist. Assoc., 111, 516, 1684-1695 (2016)
[28] Ramsay, J.; Silverman, B. W., Functional Data Analysis (2005), Springer-Verlag: Springer-Verlag New York · Zbl 1079.62006
[29] Rudin, W., Real and Complex Analysis (1987), McGraw-Hill Inc · Zbl 0925.00005
[30] Stute, W., Nonparametric models checks for regression, Ann. Statist., 25, 613-641 (1997) · Zbl 0926.62035
[31] van der Vaart, A. D.; Wellner, J. A., Weak convergence and empirical processes, (Springer Series in Statistics (1996), Springer-Verlag: Springer-Verlag New-York) · Zbl 0862.60002
[32] Wang, J. L.; Chiou, J. M.; Müller, H. G., Functional data analysis, Annu. Rev. Stat. Appl., 3, 1, 257-295 (2016)
[33] Yao, F.; Müller, H. G., Functional quadratic regression, Biometrika, 97, 49-64 (2010) · Zbl 1183.62113
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.