zbMATH — the first resource for mathematics

Functional outlier detection and taxonomy by sequential transformations. (English) Zbl 07212316
Summary: Functional data analysis can be seriously impaired by abnormal observations, which can be classified as either magnitude or shape outliers based on their way of deviating from the bulk of data. Identifying magnitude outliers is relatively easy, while detecting shape outliers is much more challenging. We propose turning the shape outliers into magnitude outliers through data transformation and detecting them using the functional boxplot. Besides easing the detection procedure, applying several transformations sequentially provides a reasonable taxonomy for the flagged outliers. A joint functional ranking, which consists of several transformations, is also defined here. Simulation studies are carried out to evaluate the performance of the proposed method using different functional depth notions. Interesting results are obtained in several practical applications.

62 Statistics
Full Text: DOI
[1] Arribas-Gil, A.; Romo, J., Shape outlier detection and visualization for functional data: the outliergram, Biostatistics, 15, 603-619 (2014)
[2] Arribas-Gil, A.; Romo, J., Discussion of “Multivariate Functional Outlier Detection”, Stat. Methods Appl., 24, 263-267 (2015) · Zbl 1441.62116
[3] Chakraborty, A.; Chaudhuri, P., On data depth in infinite dimensional spaces, Ann. Inst. Statist. Math., 66, 303-324 (2014) · Zbl 1336.62123
[4] Claeskens, G.; Hubert, M.; Slaets, L.; Vakili, K., Multivariate functional halfspace depth, J. Amer. Statist. Assoc., 109, 411-423 (2014) · Zbl 1367.62162
[5] Dai, W.; Genton, M. G., Functional boxplots for multivariate curves, Stat, 7:e190 (2018)
[6] Dai, W.; Genton, M. G., Multivariate functional data visualization and outlier detection, J. Comput. Graph. Statist., 27, 923-934 (2018)
[7] Dai, W.; Genton, M. G., Directional outlyingness for multivariate functional data, Comput. Statist. Data Anal., 131, 50-65 (2019) · Zbl 06970980
[8] Donoho, D. L., Breakdown Properties of Multivariate Location Estimators (1982), (Ph.D. qualifying paper)
[9] Febrero-Bande, M.; Oviedo de la Fuente, M., Statistical computing in functional data analysis: the r package fda.usc, Journal of Statistical Software, 51, 4, 1-28 (2012)
[10] Ferraty, F.; Vieu, P., Nonparametric Functional Data Analysis: Theory and Practice (2006), Springer · Zbl 1119.62046
[11] Fraiman, R.; Muniz, G., Trimmed means for functional data, TEST, 10, 419-440 (2001) · Zbl 1016.62026
[12] Genton, M. G.; Johnson, C.; Potter, K.; Stenchikov, G.; Sun, Y., Surface boxplots, Stat, 3, 1-11 (2014)
[13] Horváth, L.; Kokoszka, P., Inference for Functional Data with Applications (2012), Springer: Springer New York · Zbl 1279.62017
[14] Huang, H.; Sun, Y., Visualization and assessment of spatio-temporal covariance properties, Spat. Stat., 34:100272 (2019)
[15] Huang, H.; Sun, Y., A decomposition of total variation depth for understanding functional outliers, Technometrics, 61, 445-458 (2019)
[16] Hubert, M.; Rousseeuw, P. J.; Segaert, P., Multivariate functional outlier detection, Stat. Methods Appl., 24, 177-202 (2015) · Zbl 1441.62124
[17] Hyndman, R. J.; Shang, H. L., Rainbow plots, bagplots, and boxplots for functional data, J. Comput. Graph. Statist., 19, 29-45 (2010)
[18] Illian, J.; Penttinen, A.; Stoyan, H.; Stoyan, D., Statistical Analysis and Modelling of Spatial Point Patterns (2008), Wiley: Wiley Chichester · Zbl 1197.62135
[19] Kuhnt, S.; Rehage, A., An angle-based multivariate functional pseudo-depth for shape outlier detection, J. Multivariate Anal., 146, 325-340 (2016) · Zbl 1381.62069
[20] Long, J. P.; Huang, J. Z., A study of functional depths (2015), ArXiv preprint arXiv:1506.01332
[21] López-Pintado, S.; Romo, J., On the concept of depth for functional data, J. Amer. Statist. Assoc., 104, 718-734 (2009) · Zbl 1388.62139
[22] Myllymäki, M.; Mrkvička, T.; Grabarnik, P.; Seijo, H.; Hahn, U., Global envelope tests for spatial processes, J. R. Stat. Soc. Ser. B Stat. Methodol., 79, 381-404 (2017) · Zbl 1414.62404
[23] Nagy, S.; Gijbels, I.; Hlubinka, D., Depth-based recognition of shape outlying functions, J. Comput. Graph. Statist., 26, 4, 883-893 (2017)
[24] Narisetty, N. N.; Nair, V. N., Extremal depth for functional data and applications, J. Amer. Statist. Assoc., 111, 1705-1714 (2016)
[25] Nieto-Reyes, A.; Battey, H., A topologically valid definition of depth for functional data, Stat. Sci., 31, 61-79 (2016) · Zbl 1436.62720
[26] Ramsay, J. O.; Silverman, B. W., Functional Data Analysis (2005), Springer · Zbl 1079.62006
[27] Rousseeuw, P. J., Multivariate estimation with high breakdown point, (Grossmann, W.; Pflug, G.; Vincze, I.; Wert, W., Mathematical Statistics and Applications, vol. B (1985), Reidel, Dordrecht), 283-297
[28] Rousseeuw, P. J.; Raymaekers, J.; Hubert, M., A measure of directional outlyingness with applications to image data and video, J. Comput. Graph. Statist., 27, 345-359 (2018)
[29] Stahel, W. A., Breakdown of covariance estimators, (Research Report 31, Fachgruppe für Statistik, ETH, Zürich (1981))
[30] Sun, Y.; Genton, M. G., Functional boxplots, J. Comput. Graph. Statist., 20, 316-334 (2011)
[31] Sun, Y.; Genton, M. G., Adjusted functional boxplots for spatio-temporal data visualization and outlier detection, Environmetrics, 23, 54-64 (2012)
[32] Sun, Y.; Genton, M. G.; Nychka, D. W., Exact fast computation of band depth for large functional datasets: How quickly can one million curves be ranked?, Stat, 1, 68-74 (2012)
[33] Wang, J. L.; Chiou, J. M.; Müller, H. G., Functional data analysis, Annu. Rev. Stat. Appl., 3, 257-295 (2016)
[34] Xie, W.; Kurtek, S.; Bharath, K.; Sun, Y., A geometric approach to visualization of variability in functional data, J. Amer. Statist. Assoc., 112, 979-993 (2017)
[35] Yao, F.; Müller, H. G.; Wang, J. L., Functional linear regression analysis for longitudinal data, Ann. Statist., 33, 6, 2873-2903 (2005) · Zbl 1084.62096
[36] Zuo, Y.; Serfling, R., General notions of statistical depth function, Ann. Statist., 28, 461-482 (2000) · Zbl 1106.62334
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.