×

zbMATH — the first resource for mathematics

Structure-preserving algorithms for the two-dimensional fractional Klein-Gordon-Schrödinger equation. (English) Zbl 1442.65219
Summary: This paper aims to construct structure-preserving numerical schemes for the two-dimensional space fractional Klein-Gordon-Schrödinger equation, which are based on the newly developed partitioned averaged vector field methods. First, we derive an equivalent equation, and reformulate the equation as an infinite dimensional canonical Hamiltonian system by virtue of the variational derivative of the functional with fractional Laplacian. Then, we use the Fourier pseudo-spectral method to discrete the equation in space direction and obtain a semi-discrete conservative system, which can be reformulated a finite dimensional canonical Hamiltonian system. Further applying the partitioned averaged vector field methods to the semi-discrete system gives a class of fully-discrete schemes that can preserve the mass and energy exactly. Numerical examples are provided to confirm our theoretical analysis results at last.

MSC:
65M22 Numerical solution of discretized equations for initial value and initial-boundary value problems involving PDEs
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
35Q55 NLS equations (nonlinear Schrödinger equations)
Software:
FODE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bao, W.; Yang, L., Efficient and accurate numerical methods for the Klein-Gordon-Schrödinger equations, J. Comput. Phys., 225, 1863-1893 (2007) · Zbl 1125.65093
[2] Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61, 132-138 (2000)
[3] Benson, D.; Wheatcraft, S.; Meerschaert, M., The fractional-order governing equation of Lévy motion, Water Resour. Res., 36, 1413-1423 (2000)
[4] Blackledge, J.; Babajanov, B., The fractional Klein-Gordon-Schrödinger equation and intermediate relativism, Math. Æterna, 3, 601-615 (2013) · Zbl 1288.35445
[5] Caffarelli, L.; Silvestre, L., An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32, 1245-1260 (2007) · Zbl 1143.26002
[6] Cai, J.; Shen, J., Two classes of linearly implicit local energy-preserving approach for general multi-symplectic Hamiltonian PDEs, J. Comput. Phys., 401, Article 108975 pp. (2020)
[7] Cai, J.; Zhang, H., Efficient schemes for the damped nonlinear Schrödinger equation in high dimensions, Appl. Math. Lett., 102, Article 106158 pp. (2020) · Zbl 07206976
[8] Cai, W.; Li, H.; Wang, Y., Partitioned averaged vector field methods, J. Comput. Phys., 370, 25-42 (2018) · Zbl 1398.65331
[9] Cao, J.; Song, G.; Wang, J.; Shi, Q.; Sun, S., Blow-up and global solutions for a class of time fractional nonlinear reaction-diffusion equation with weakly spatial source, Appl. Math. Lett., 61, 201-206 (2019) · Zbl 1407.35034
[10] Deng, W., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 204-226 (2008) · Zbl 1416.65344
[11] Ding, H.; Li, C.; Chen, Y., High-order algorithms for Riesz derivative and their applications (II), J. Comput. Phys., 293, 218-237 (2015) · Zbl 1349.65284
[12] Hong, J.; Jiang, S.; Li, C., Explicit multi-symplectic methods for Klein-Gordon-Schrödinger equations, J. Comput. Phys., 228, 3517-3532 (2009) · Zbl 1164.65035
[13] Hong, Q.; Wang, Y.; Wang, J., Optimal error estimate of a linear Fourier pseudo-spectral scheme for two dimensional Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 468, 817-838 (2018) · Zbl 1407.65213
[14] Huang, C.; Guo, B.; Huang, D.; Li, Q., Global well-posedness of the fractional Klein-Gordon-Schrödinger system with rough initial data, Sci. China, 59, 1345-1366 (2016) · Zbl 1346.35213
[15] Li, C.; Wang, Z., The local discontinuous Galerkin finite element methods for Caputo-type partial differential equations: numerical analysis, Appl. Numer. Math., 140, 1-22 (2019) · Zbl 1435.65161
[16] Li, M.; Huang, C.; Zhao, Y., Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation, Numer. Algorithms (2020)
[17] Lin, Y.; Xu, C., Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121
[18] Liu, F.; Burrage, K., Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 62, 822-833 (2011) · Zbl 1228.93114
[19] Liu, X.; Xu, C., Efficient time-stepping/spectral methods for the Navier-Stokes-Nernst-Planck-Poisson equations, Commun. Comput. Phys., 21, 1408-1428 (2017)
[20] McLachlan, R.; Quispel, G.; Robidoux, N., Geometric integration using discrete gradients, Philos. Trans. R. Soc. Lond. A, 357, 1021-1045 (1999) · Zbl 0933.65143
[21] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339, 1-77 (2000) · Zbl 0984.82032
[22] Quispel, G.; McLachlan, R., A new class of energy-preserving numerical integration methods, J. Phys. A, Math. Theor., 41, 75-97 (2008)
[23] Roncal, L.; Stinga, P., Fractional Laplacian on the torus, Commun. Contemp. Math., 18, Article 1550033 pp. (2016) · Zbl 1383.35246
[24] Wang, D.; Xiao, A.; Yang, W., A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 272, 644-655 (2014) · Zbl 1349.65339
[25] Wang, J.; Xiao, A., An efficient conservative difference scheme for fractional Klein-Gordon-Schrödinger equations, Appl. Math. Comput., 320, 691-709 (2018) · Zbl 1427.65189
[26] Wang, J.; Xiao, A., Conservative Fourier spectral method and numerical investigation of space fractional Klein-Gordon-Schrödinger equations, Appl. Math. Comput., 350, 348-365 (2019) · Zbl 1429.65254
[27] Wang, P.; Huang, C., A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation, Numer. Algorithms, 69, 625-641 (2015) · Zbl 1325.65127
[28] Wang, P.; Huang, C., Structure-preserving numerical methods for the fractional Schrödinger equation, Appl. Numer. Math., 129, 137-158 (2018) · Zbl 1393.65055
[29] Wyss, W., The fractional Black-Scholes equation, Fract. Calc. Appl. Anal., 3, 51-61 (2000) · Zbl 1058.91045
[30] Zaslavsky, G., Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371, 461-580 (2002) · Zbl 0999.82053
[31] Zeng, W.; Xiao, A.; Li, X., Error estimate of Fourier pseudo-spectral method for multidimensional nonlinear complex fractional Ginzburg-Landau equations, Appl. Math. Lett., 93, 40-45 (2019) · Zbl 1414.65026
[32] Zhao, X.; Sun, Z.; Peng, H., A fourth-order compact ADI scheme for 2D nonlinear space fractional Schrödinger equation, SIAM J. Sci. Comput., 36, A2865-A2886 (2014) · Zbl 1328.65187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.