zbMATH — the first resource for mathematics

Volatility estimation and jump detection for drift-diffusion processes. (English) Zbl 1456.62251
Summary: The logarithmic prices of financial assets are conventionally assumed to follow a drift-diffusion process. While the drift term is typically ignored in the infill asymptotic theory and applications, the presence of temporary nonzero drifts is an undeniable fact. The finite sample theory for integrated variance estimators and extensive simulations provided in this paper reveal that the drift component has a nonnegligible impact on the estimation accuracy of volatility, which leads to a dramatic power loss for a class of jump identification procedures. We propose an alternative construction of volatility estimators and observe significant improvement in the estimation accuracy in the presence of nonnegligible drift. The analytical formulas of the finite sample bias of the realized variance, bipower variation, and their modified versions take simple and intuitive forms. The new jump tests, which are constructed from the modified volatility estimators, show satisfactory performance. As an illustration, we apply the new volatility estimators and jump tests, along with their original versions, to 21 years of 5-minute log returns of the NASDAQ stock price index.
62P05 Applications of statistics to actuarial sciences and financial mathematics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60J60 Diffusion processes
62P20 Applications of statistics to economics
91B84 Economic time series analysis
Full Text: DOI
[1] Aalen, O. O.; Gjessing, H. K., Survival models based on the Ornstein-Uhlenbeck process, Lifetime Data Anal., 10, 4, 407-423 (2004) · Zbl 1058.62092
[2] Aït-Sahalia, Y., Disentangling diffusion from jumps, J. Financ. Econ., 74, 3, 487-528 (2004)
[3] Aldous, D., Probability Approximations via The Poisson Clumping Heuristic, vol. 77 (1989), Springer-Verlag: Springer-Verlag New York · Zbl 0679.60013
[4] Andersen, T.; Bollerslev, T., Answering the skeptics: Yes, standard volatility models do provide accurate forecasts, Internat. Econom. Rev., 39, 4, 885-905 (1998)
[5] Andersen, T. G.; Bollerslev, T., Deutsche mark-dollar volatility: intraday activity patterns, macroeconomic announcements, and longer run dependencies, J. Finance, 53, 1, 219-265 (1998)
[6] Andersen, T. G.; Bollerslev, T.; Dobrev, D., No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and iid noise: Theory and testable distributional implications, J. Econometrics, 138, 1, 125-180 (2007) · Zbl 1418.62371
[7] Andersen, T.; Bollerslev, T.; Labys, P., Modeling and forecasting realized volatility, Econometrica, 71, 2, 579-625 (2003) · Zbl 1142.91712
[8] Andersen, T. G.; Bollerslev, T.; Labys, P., The distribution of realized exchange rate volatility, J. Amer. Statist. Assoc., 96, 453, 42-55 (2001) · Zbl 1015.62107
[9] Andersen, T. G.; Dobrev, D.; Schaumburg, E., Jump-robust volatility estimation using nearest neighbor truncation, J. Econometrics, 169, 1, 75-93 (2012) · Zbl 1443.62327
[10] Arnold, L., Stochastic Differential Equations (1974), A Wiley-Interscience publication: A Wiley-Interscience publication Wiley
[11] Balvers, R.; Wu, Y.; Gilliland, E., Mean reversion across national stock markets and parametric contrarian investment strategies, J. Finance, 55, 2, 745-772 (2000)
[12] Bandi, F. M.; Russell, J. R., On the finite sample properties of kernel-based integrated variance estimators, ((2005), Graduate School of Business, University of Chicago), (unpublished paper)
[13] Bandi, F. M.; Russell, J. R., Separating microstructure noise from volatility, J. Financ. Econ., 79, 3, 655-692 (2006)
[14] Barndorff-Nielsen, O. E.; Shephard, N., Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics, J. R. Stat. Soc. Ser. B Stat. Methodol., 63, 2, 167-241 (2001) · Zbl 0983.60028
[15] Barndorff-Nielsen, O. E.; Shephard, Econometric analysis of realized volatility and its use in estimating stochastic volatility models, J. R. Stat. Soc. Ser. B Stat. Methodol., 64, 2, 253-280 (2002) · Zbl 1059.62107
[16] Barndorff-Nielsen, O. E.; Shephard, N., Power and bipower variation with stochastic volatility and jumps (with discussion), J. Financ. Econ., 2, 1, 1-37 (2004)
[17] Bauwens, L.; Hafner, C. M.; Laurent, S., Handbook of Volatility Models and their Applications, vol. 3 (2012), John Wiley & Sons · Zbl 1325.62003
[18] Bekaert, G.; Hodrick, R. J., Characterizing predictable components in excess returns on equity and foreign exchange markets, J. Finance, 47, 2, 467-509 (1992)
[19] Bessembinder, H.; Chan, K., Time-varying risk premia and forecastable returns in futures markets, J. Financ. Econ., 32, 2, 169-193 (1992)
[20] Boudt, K.; Croux, C.; Laurent, S., Robust estimation of intraweek periodicity in volatility and jump detection, J. Empir. Financ., 18, 2, 353-367 (2011)
[21] Boudt, K.; Laurent, S.; Lunde, A.; Quaedvlieg, R.; Sauri, O., Positive semidefinite integrated covariance estimation, factorizations and asynchronicity, J. Econometrics, 196, 2, 347-367 (2017) · Zbl 1403.62095
[22] Campbell, J. Y.; Ammer, J., What moves the stock and bond markets? A variance decomposition for long-term asset returns, J. Finance, 48, 1, 3-37 (1993)
[23] Campbell, J. Y.; Hamao, Y., Predictable stock returns in the United States and Japan: A study of long-term capital market integration, J. Finance, 47, 1, 43-69 (1992)
[24] Chaudhuri, K.; Wu, Y., Random walk versus breaking trend in stock prices: Evidence from emerging markets, J. Bank. Financ., 27, 4, 575-592 (2003)
[25] Chen, E. J., Selection and order statistics from correlated normal random variables, Discrete Event Dyn. Syst., 24, 4, 659-668 (2014) · Zbl 1302.93191
[26] Christensen, K.; Oomen, R.; Renò, R., The drift burst hypothesis (2016), Department of Economics and Business Economics, Aarhus University
[27] Dominicy, Y.; Hörmann, S.; Veredas, D., On sample marginal quantiles for stationary processes, Statist. Probab. Lett., 83, 1, 28-36 (2013) · Zbl 06130761
[28] Dumitru, A.; Urga, G., Identifying jumps in financial assests: a comparison between nonparametric jump tests, J. Bus. Econom. Statist., 30, 2, 242-255 (2012)
[29] Etienne, X. L.; Irwin, S. H.; Garcia, P., Bubbles in food commodity markets: Four decades of evidence, J. Int. Money Finance, 42, 129-155 (2014)
[30] Eugene, N.; Lee, C.; Famoye, F., Beta-normal distribution and its applications, Commun. Statist. Theory Methods, 31, 4, 497-512 (2002) · Zbl 1009.62516
[31] Fama, E. F.; French, K. R., Permanent and temporary components of stock prices, J. Political Economy, 96, 2, 246-273 (1988)
[32] Ferguson, T. S., Asymptotic joint distribution of sample mean and a sample quantile (1999), (unpublished), http://www.math.ucla.edu/tom/papers/unpublished/meanmed.pdf
[33] Gupta, A. K.; Nadarajah, S., On the moments of the beta normal distribution, Comm. Statist. Theory Methods, 33, 1, 1-13 (2005) · Zbl 1210.60018
[34] Gupta, S. S.; Nagel, K.; Panchapakesan, S., On the order statistics from equally correlated normal random variables, Biometrika, 60, 2, 403-413 (1973) · Zbl 0263.62031
[35] Gutierrez, L., Speculative bubbles in agricultural commodity markets, Eur. Rev. Agric. Econ., 40, 2, 217-238 (2012)
[36] Homm, U.; Breitung, J., Testing for speculative bubbles in stock markets: a comparison of alternative methods, J. Financ. Econ., 10, 1, 198-231 (2012)
[37] Koenker, R.; Bassett, G., Regression quantiles, Econometrica, 46, 1, 33-50 (1978) · Zbl 0373.62038
[38] Koenker, R.; Chesher, A.; Jackson, M., (Quantile Regression. Quantile Regression, Econometric Society Monographs (2005), Cambridge University Press)
[39] Lee, S. S.; Hannig, J., Detecting jumps from levy jump diffusion processes, J. Financ. Econ., 96, 2, 271-290 (2010)
[40] Lee, S. S.; Mykland, P. A., Jumps in financial markets: A new nonparametric test and jump dynamics, Rev. Financ. Stud., 21, 6, 2535-2563 (2008)
[41] Lee, S. S.; Mykland, P. A., Jumps in equilibrium prices and market microstructure noise, J. Econometrics, 168, 2, 396-406 (2012) · Zbl 1443.62360
[42] Lo, A. W.; MacKinlay, A. C., Stock market prices do not follow random walks: Evidence from a simple specification test, Rev. Financ. Stud., 1, 1, 41-66 (1988)
[43] Lo, A. W.; Wang, J., Implementing option pricing models when asset returns are predictable, J. Finance, 50, 1, 87-129 (1995)
[44] Mancini, C., Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps, Scand. J. Statist., 36, 2, 270-296 (2009) · Zbl 1198.62079
[45] Mancini, C.; Calvori, F., Jumps, (Bauwens, L.; Hafner, C.; Laurent, S., Handbook of Volatility Models and their Applications (2012), Wiley)
[46] Maronna, R. A.; Martin, D. R.; Yohai, V. J., Robust Statistics: Theory and Methods (2006), Wiley · Zbl 1094.62040
[47] Meddahi, N., A theoretical comparison between integrated and realized volatility, J. Appl. Econometrics, 17, 5, 479-508 (2002)
[48] Mutangi, K.; Matarise, D. F., On how to find the norming constants for the maxima of a folded normally distributed variable, J. Statist. Res. (2011)
[49] Nelson, D. B., ARCH models as diffusion approximations, J. Econometrics, 45, 1-2, 7-38 (1991) · Zbl 0719.60089
[50] Nicolato, E.; Venardos, E., Option pricing in stochastic volatility models of the ornstein-uhlenbeck type, Math. Finance, 13, 4, 445-466 (2003) · Zbl 1105.91020
[51] Park, S.; Linton, O., Realized volatility: Theory and application, (Bauwens, L.; Hafner, C.; Laurent, S., Handbook of Volatility Models and their Applications (2011), Wiley)
[52] Phillips, P. C.B., Time series regression with a unit root, Econometrica, 5, 2, 277-301 (1987) · Zbl 0613.62109
[53] Phillips, P. C.B.; Shi, S., Detecting financial collapse and ballooning sovereign risk, Oxford B. Econ. Stat., 81, 6, 1336-1361 (2019)
[54] Phillips, P. C.B.; Shi, S.; Yu, J., Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S & P 500, Internat. Econom. Rev., 56, 4, 1043-1078 (2015) · Zbl 1404.62111
[55] Phillips, P. C.B.; Wu, Y.; Yu, J., Explosive behavior in the 1990s NASDAQ: When did exuberance escalate asset values?, Internat. Econom. Rev., 52, 1, 201-226 (2011)
[56] Phillips, P. C.B.; Yu, J., Dating the timeline of financial bubbles during the subprime crisis, Quant. Econ., 2, 3, 455-491 (2011) · Zbl 1235.91143
[57] Podolskij, M.; Vetter, M., Estimation of volatility functionals in the simultaneous presence of microstructure noise and jumps, Bernoulli, 15, 3, 634-658 (2009) · Zbl 1200.62131
[58] Rychlik, T., Distributions and expectations of order statistics for possibly dependent random variables, J. Multivariate Anal., 48, 1, 31-42 (1994) · Zbl 0790.62048
[59] Shi, S.; Song, Y., Identifying speculative bubbles using an infinite hidden Markov model, J. Financ. Econ., 14, 1, 159-184 (2016)
[60] Taylor, S.; Xu, X., The incremental volatility information in one million foreign exchange quotations, J. Empir. Financ., 4, 4, 317-340 (1997)
[61] Wang, X.; Yu, J., Double asymptotics for explosive continuous time models, J. Econometrics, 193, 1, 35-53 (2016) · Zbl 1420.62400
[62] Wu, W. B., On the bahadur representation of sample quantiles for dependent sequences, Ann. Statist., 33, 4, 1934-1963 (2005) · Zbl 1080.62024
[63] Zhou, Q.; Yu, J., Asymptotic theory for linear diffusions under alternative sampling schemes, Econom. Lett., 128, 1-5 (2015) · Zbl 1321.62151
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.