zbMATH — the first resource for mathematics

The Diamond ensemble: a constructive set of spherical points with small logarithmic energy. (English) Zbl 1443.31004
Summary: We define a family of random sets of points, the Diamond ensemble, on the sphere \(\mathbb{S}^2\) depending on several parameters. Its most important property is that, for some of these parameters, the asymptotic expected value of the logarithmic energy of the points can be computed rigorously and shown to attain very small values, quite close to the conjectured minimal value.

31B15 Potentials and capacities, extremal length and related notions in higher dimensions
Full Text: DOI
[1] Alishahi, K.; Zamani, M., The spherical ensemble and uniform distribution of points on the sphere, Electron. J. Probab., 20, 23-27 (2015) · Zbl 1327.60022
[2] Armentano, D.; Beltrán, C.; Shub, M., Minimizing the discrete logarithmic energy on the sphere: the role of random polynomials, Trans. Amer. Math. Soc., 363, 6, 2955-2965 (2011) · Zbl 1223.31003
[3] Bétermin, L.; Sandier, E., Renormalized energy and asymptotic expansion of optimal logarithmic energy on the sphere, Constr. Approx., 47, 1, 39-74 (2018) · Zbl 1391.82002
[4] Borodachov, S. V.; Hardin, D. P.; Saff, E. B., (Discrete Energy on Rectifiable Sets. Discrete Energy on Rectifiable Sets, Springer Monographs in Mathematics (2019), Springer: Springer New York, NY), xviii+666 · Zbl 1437.41002
[5] Brauchart, J. S., Optimal logarithmic energy points on the unit sphere, Math. Comp., 77, 263, 1599-1613-326 (2008) · Zbl 1196.41009
[6] Brauchart, J. S.; Grabner, P. J., Distributing many points on spheres: minimal energy and designs, J. Complexity, 31, 3, 293-326 (2015) · Zbl 1320.65007
[7] Brauchart, J. S.; Hardin, D. P.; Saff, E. B., The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N, Bull. Lond. Math. Soc., 41, 4, 621-633 (2009) · Zbl 1175.30003
[8] Brauchart, J. S.; Hardin, D. P.; Saff, E. B., The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere, (Recent Advances in Orthogonal Polynomials, Special Functions, and their Applications. Recent Advances in Orthogonal Polynomials, Special Functions, and their Applications, Contemp. Math., vol. 578 (2012), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 31-61 · Zbl 1318.31011
[9] Dubickas, A., On the maximal product of distances between points on a sphere, Liet. Mat. Rink., 36, 3, 303-312 (1996) · Zbl 0890.11023
[10] Gradshteyn, I. S.; Ryzhik, I. M., Table of Integrals, Series, and Products, xlvi+1133 (2015), Elsevier/Academic Press, Amsterdam, Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Revised from the seventh edition · Zbl 1300.65001
[11] Hardin, D. P.; Michaels, T.; Saff, E. B., A comparison of popular point configurations on \(\mathbb{S}^2\), Dolomites Res. Notes Approx., 9, 1, 16-49 (2016) · Zbl 1370.31001
[12] Holhoş, A.; Roşca, D., An octahedral equal area partition of the sphere and near optimal configurations of points, Comput. Math. Appl., 67, 5, 1092-1107 (2014) · Zbl 1350.65016
[13] Kress, R., (Numerical Analysis. Numerical Analysis, Graduate Texts in Mathematics, vol. 181 (1998), Springer-Verlag: Springer-Verlag New York), xii+326 · Zbl 0913.65001
[14] Krishnapur, M., From random matrices to random analytic functions, Ann. Probab., 37, 1, 314-346 (2009) · Zbl 1221.30007
[15] Landkof, N. S., (Foundations of Modern Potential Theory, Translated by Doohovskoy, A.P.. Foundations of Modern Potential Theory, Translated by Doohovskoy, A.P., Grundlehren der Mathematischen Wissenschaften (2011), Springer: Springer Berlin Heidelberg) · Zbl 0253.31001
[16] Maxima, a computer algebra system. Version 19.01.2x (2018)
[17] Petrache, M.; Serfaty, S., Crystallization for coulomb and Riesz interactions as a consequence of the Cohn-Kumar conjecture (2019), arXiv:1908.09714 · Zbl 1439.52025
[18] Rakhmanov, E.; Saff, E.; Zhou, Y., Minimal discrete energy on the sphere, Math. Res. Lett., 1, 647-662 (1994) · Zbl 0839.31011
[19] Sandier, E.; Serfaty, S., \( 2 d\) Coulomb gases and the renormalized energy, Ann. Probab., 43, 4, 2026-2083 (2015) · Zbl 1328.82006
[20] Shub, M.; Smale, S., Complexity of Bezout’s theorem. III. Condition number and packing, J. Complexity, 49, 1, 4-14 (1993) · Zbl 0846.65018
[21] Smale, S., Mathematical problems for the next century, Math.: Front. Perspect., 271-294 (2000) · Zbl 1031.00005
[22] Wagner, G., On the product of distances to a point set on a sphere, J. Aust. Math. Soc., 47, 3, 466-482 (1989) · Zbl 0706.11046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.