×

Composition operators and closures of \(\mathcal{Q}_K(p,q)\)-type spaces in the Logarithmic Bloch space. (English) Zbl 1441.30083

Summary: Closures of \(\mathcal{Q}_K(p,q)\)-type spaces in the Logarithmic Bloch space are investigated in this paper. Moreover, we characterize the boundedness and compactness of composition operators from the Logarithmic Bloch space to the closure of \(\mathcal{Q}_K(p,q)\) type spaces in the Logarithmic Bloch space

MSC:

30H25 Besov spaces and \(Q_p\)-spaces
47B33 Linear composition operators
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] J. Anderson,Bloch functions: the basic theory, Operators and function theory (Lancaster, 1984), 1-17, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 153, Reidel, Dordrecht, 1985.
[2] J. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions,J. Reine Angew. Math.270(1974), 12-37. · Zbl 0292.30030
[3] J. Arazy, S. Fisher and J. Peetre, M¨obius invariant function spaces,J. Reine Angew. Math.363(1985), 110-145. · Zbl 0566.30042
[4] R. Aulaskari and R. Zhao, Composition operators and closures of some M¨obius invariant spaces in the Bloch space,Math. Scand.107(2010), 139-149. · Zbl 1217.30032
[5] G. Bao and N. G¨o˘g¨us¸, On the closures of Dirichlet type spaces in the Bloch space, Complex Anal. Oper. Theory13(2019), 45-59.
[6] G. Bao, Z. Lou, R. Qian and H. Wulan, Improving multipliers and zero sets inQK spaces,Collect. Math.66(2015), 453-468. · Zbl 1327.30068
[7] L. Brown and A. Shields, Multipliers and cyclic vectors in the Bloch space,Michigan Math. J.38(1991), 141-146. · Zbl 0749.30023
[8] C. C. Cowen and B. D. MacCluer,Composition Operators on Spaces of Analytic Functions, CRC Press, Boca Raton, FL, 1995. · Zbl 0873.47017
[9] P. Duren,Theory ofHpSpaces, Academic Press, New York, 1970.
[10] P. Galanopoulos, OnBlogtoQppullbacks,J. Math. Anal. Appl.337(2008), 712- log
[11] P. Galanopoulos, N. Monreal Gal´an and J. Pau, Closure of Hardy spaces in the Bloch space,J. Math. Anal. Appl.429(2015), 1214-1221. · Zbl 1327.32008
[12] P. Ghatage and D. Zheng, Analytic functions of bounded mean oscillation and the Bloch space,Integr. Equ. Oper. Theory17(1993), 501-515. · Zbl 0796.46011
[13] J. Han and Y. Wu, The high order derivative characterization of logarithmic Bloch type spaces,J. Anhui Univ. Sci. Tech.2(2013), 32-34.
[14] S. Li and S. Stevi´c, Generalized composition operators on Zygmund spaces and Bloch type spaces,J. Math. Anal. Appl.338(2008), 1282-1295. · Zbl 1135.47021
[15] X. Liu and S. Li, Norm and essential norm of a weighted composition operator on the Bloch space,Integr. Equ. Oper. Theory87(2017), 309-325. · Zbl 1372.30059
[16] Z. Lou, Composition operators on Bloch type spaces,Analysis (Munich),23 (2003), 81-95. · Zbl 1058.47024
[17] Z. Lou and W. Chen, Distances from Bloch functions toQK-type space,Integr. Equ. Oper. Theory67(2010), 171-181. · Zbl 1208.30034
[18] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc.347(1995), 2679-2687. · Zbl 0826.47023
[19] N. Monreal Gal´an and A. Nicolau, The closure of the Hardy space in the Bloch norm,Algebra i Analiz22(2010), 75-81, translation inSt. Petersburg Math. J.22 (2011), 55-59. · Zbl 1211.30064
[20] R. Qian and S. Li, Composition operators and closures of Dirichlet type spacesDα in the logarithmic Bloch space,Indag. Math.29(2018), 1432-1440. · Zbl 06939373
[21] R. Qian and S. Li, Composition operators and closures of Dirichlet type spacesDµ in Bloch type spaces,Anal. Math.45(2019), 121-132. · Zbl 1438.30175
[22] M. Tjani, Distance of a Bloch function to the little Bloch space,Bull. Austral. Math. Soc.74(2006), 101-119. · Zbl 1101.30035
[23] H. Wulan, D. Zheng and K. Zhu, Compact composition operators on BMOA and the Bloch space,Proc. Amer. Math. Soc.137(2009), 3861-3868. · Zbl 1194.47038
[24] H. Wulan and J. Zhou,QKtype spaces of analytic functions,J. Funct. Spaces Appl. 4(2006), 73-84. · Zbl 1098.30027
[25] H. Wulan and J. Zhou, The higher order derivatives ofQKtype spaces,J. Math. Anal. Appl.332(2007), 1216-1228. · Zbl 1126.46017
[26] H. Wulan and K. Zhu,M¨obius InvariantQKSpaces, Springer International Publishing AG, 2017.
[27] W. Xu, Distances from Bloch functions to some M¨obius invariant spaces in the unit ball ofCn,J. Funct. Spaces Appl.7(2009), 91-104.
[28] R. Yoneda, The composition operators on weighted Bloch space,Arch Math.(Basel),78(2002), 310-317. · Zbl 1038.47020
[29] R. Zhao,On a general family of function space,Ann. Acad. Sci. Fenn. Math.Dissert. No. 105 (1996).
[30] R. Zhao, Distances from Bloch functions to some M¨obius invariant spaces,Ann. Acad. Sci. Fenn. Math.33(2008), 303-313. · Zbl 1147.30024
[31] R. Zhao, Essential norms of composition operators between Bloch type spaces, Proc. Amer. Math. Soc.138(2010), 2537-2546. · Zbl 1190.47028
[32] K.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.