zbMATH — the first resource for mathematics

Non-linear failure rate: a Bayes study using Hamiltonian Monte Carlo simulation. (English) Zbl 1452.62230
Summary: A generalization of the linear failure rate called non-linear failure rate is introduced, analyzed, and applied to real data sets for both censored and uncensored data. The Hamiltonian Monte Carlo and cross-entropy methods have been exploited to empower the traditional methods of statistical estimation. We have obtained the Bayes estimators of parameters and reliability characteristics using Hamiltonian Monte Carlo and these estimators are considered under both symmetric and asymmetric loss functions. Additionally, the maximum likelihood estimators of parameters are obtained by using the cross-entropy method to optimize the log-likelihood function. The superiority of the proposed model and estimation procedures are demonstrated on real data sets adopted from references.
62F15 Bayesian inference
62N01 Censored data models
65C05 Monte Carlo methods
Full Text: DOI
[1] Montgomery, D. C.; Runger, G. C., Applied Statistics and Probability for Engineers (2018), Wiley
[2] Kodlin, D., A new response time distribution, Biometrics, 2, 227-239 (1967)
[3] Bain, L. J., Analysis for the linear failure-rate life-testing distribution, Technometrics, 16, 551-559 (1974) · Zbl 0295.62092
[4] Pandey, A.; Singh, A.; Zimmer, W. J., Bayes estimation of the linear hazard-rate model, IEEE Trans. Reliab., 42, 636-640 (1993) · Zbl 0797.62094
[5] Salem, S. A., Bayesian estimation of a non-linear failure rate from censored samples type II, Microelectron. Reliab., 32, 1385-1388 (1992)
[6] Bousquet, N.; Bertholon, H.; Celeux, G., An alternative competing risk model to the Weibull distribution for modeling aging in lifetime data analysis, Lifetime Data Anal., 12, 481-504 (2006) · Zbl 1109.62008
[7] Thach, T. T.; Bris, R., Non-linear failure rate: a comparison of the Bayesian and frequentist approaches to estimation, (Bris, Radim; Whan Chang, Gyu; Duc Khanh, Chu; Razzaghi, Mohsen; Stempak, Krzysztof; Thanh Toan, Phan, Proceedings of International Conference on Mathematics ICM 2018, ITM Web of Conferences 20 (2018)), Article 03001 pp., Open Access, ISBN: 978-7598-9058-3
[8] Xie, M.; Lai, C. D., Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function, Reliab. Eng. Syst. Saf., 52, 87-93 (1995)
[9] Almalki, S. J.; Yuan, J., A new modified Weibull distribution, Reliab. Eng. Syst. Saf., 111, 164-170 (2013)
[10] He, B.; Cui, W.; Du, X., An additive modified Weibull distribution, Reliab. Eng. Syst. Saf., 145, 28-37 (2016)
[11] Wang, F. K., A new model with bathtub-shaped failure rate using an additive Burr XII distribution, Reliab. Eng. Syst. Saf., 70, 3, 305-312 (2000)
[12] McLachlan, G. J.; Krishnan, T., The EM Algorithm and Extensions (2008), Wiley-Interscience · Zbl 1165.62019
[13] Rubinstein, R. Y.; Kroese, D. P., The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation and Machine Learning (2004), Springer-Verlag: Springer-Verlag New York · Zbl 1140.90005
[14] Gupta, A.; Mukherjee, B.; Upadhyay, S. K., Weibull extension model: a Bayes study using Markov chain Monte Carlo simulation, Reliab. Eng. Syst. Saf., 93, 10, 1434-1443 (2008)
[15] Upadhyay, S. K.; Gupta, A., A Bayesian analysis of modified Weibull distribution using Markov Chain Monte Carlo simulation, J. Stat. Comput. Simul., 80, 3, 241-254 (2010) · Zbl 1187.62058
[16] Soliman, A. A.; Abd-Ellah, A. H.; Abou-Elheggag, N. A.; Modified, Essam AA., Weibull model: a Bayes study using MCMC approach based on progressive censoring data, Reliab. Eng. Syst. Saf., 100, 48-57 (2012)
[17] Kundu, D.; Howlader, H., Bayesian inference and prediction of the inverse Weibull distribution for type-II censored data, Comput. Stat. Data Anal., 54, 6, 1547-1558 (2010) · Zbl 1284.62604
[18] Gelman, A.; Carlin, J. B.; Stern, H. S.; Dunson, D. B.; Vehtari, A.; Rubin, D. B., Bayesian Data Analysis (2014), CRC Press · Zbl 1279.62004
[19] W.R. Blischke, M.R. Karim, D.P. Murthy, Warranty data collection and analysis. · Zbl 1226.90002
[20] Kalbfleisch, J. D.; Prentice, R. L., The Statistical Analysis of Failure Time Data (2002), Wiley: Wiley New York · Zbl 1012.62104
[21] Meeker, W. Q.; Escobar, L. A., Statistical Methods for Reliability Data (1998), Wiley · Zbl 0949.62086
[22] Thach, T. T.; Reparameterized, Bris R., Weibull distribution: a Bayes study using Hamiltonian Monte Carlo, (Beer, M.; Zio, E., Proceedings of the 29th European Safety and Reliability Conference (2019), Research Publishing: Research Publishing Singapore), 997-1004
[23] Kroese, D. P.; Porotsky, S.; Rubinstein, R. Y., The cross-entropy method for continuous multi-extremal optimization, Methodol. Comput. Appl. Probab., 8, 383-407 (2006) · Zbl 1107.65049
[24] Neal, R. M., MCMC using Hamilton dynamics, (Brooks, S.; Gelman, A.; Jones, G.; Meng, X. L., Handbook of Markov Chain Monte Carlo (2011), CRC Press) · Zbl 1229.65018
[25] Stansbury, D. E.M. CM. C., Hamiltonian Monte Carlo (a.k.a. Hybrid Monte Carlo) (2012)
[26] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E., Equation of state calculations by fast computing machines, J. Chem. Phys., 21, 1087-1092 (1953) · Zbl 1431.65006
[27] Alder, B.; Wainwright, T., Studies in molecular dynamics I. General method, J. Chem. Phys., 31, 2, 459-466 (1959)
[28] Duane, S.; Kennedy, A. D.; Pendleton, B. J.; Roweth, D., Hybrid Monte Carlo, Phys. Lett. B, 195, 2, 216-222 (1987)
[29] Neal, R. M., Bayesian Learning for Neural Networks, Lecture Notes in Statistics, vol. 118 (1996), Springer: Springer New York · Zbl 0888.62021
[30] Hoffman, M. D.; The, Gelman A., No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res., 15, 1593-1623 (2014) · Zbl 1319.60150
[31] Samaniego, F. J., A Comparison of the Bayesian and Frequentist Approaches to Estimation (2010), Springer · Zbl 1204.62028
[32] Canfield, R., A Bayesian approach to reliability estimation using a loss function, IEEE Trans. Reliab., 19, 13-16 (1970)
[33] Feynman, RP. Mr., Feynman Goes to Washington. Engineering and Science, 6-22 (1987), California Institute of Technology: California Institute of Technology Pasadena, CA
[34] Basu, A. P.; Ebrahimi, N., Bayesian approach to life testing and reliability estimation using asymmetric loss function, J. Stat. Plan. Inference, 29, 21-31 (1991) · Zbl 0850.62719
[35] Varian, H. R., A Bayesian approach to real estate assessment, (Savage, L. J.; Feinberg, S. E.; Zellner, A., Studies in Bayesian Econometrics and Statistics: in Honor of L.J. Savage (1975), North-Holland Pub. Co.: North-Holland Pub. Co. Amsterdam), 195-208
[36] Singh, P. K.; Singh, S. K.; Singh, U., Bayesian estimator of inverse Gaussian parameters under general entropy loss function using Lindley’s approximation, Commun. Stat., Simul. Comput., 37, 9, 1750-1762 (2010) · Zbl 1274.62210
[37] Jiang, H.; Xie, M.; Tang, L. C., Markov chain Monte Carlo methods for parameter estimation of the modified Weibull distribution, J. Appl. Stat., 35, 6, 647-658 (2008) · Zbl 1147.62317
[38] Spiegelhalter, D. J.; Best, N. G.; Carlin, B. P.; van der Linde, A., The deviance information criterion: 12 years on, J. R. Stat. Soc., Ser. B, Stat. Methodol., 76, 3, 485-493 (2014) · Zbl 1411.62027
[39] Banerjee, S.; Carlin, B. P.; Gelfand, A. E., Hierarchical Modeling and Analysis for Spatial Data (2014), CRC Press
[40] Benham, T.; Duan, Q.; Kroese, D. P.; Liquet, B., CEoptim: cross-entropy R package for optimization, J. Stat. Softw., 76, 8, 1-29 (2017)
[41] RStan: the R interface to Stan, R package version 2.18.2
[42] Stan modeling language user’s guide and reference manual
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.