zbMATH — the first resource for mathematics

Detection and classification of solutions for systems interacting by soft impacts with sample-based method. (English) Zbl 1446.34060

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
70K40 Forced motions for nonlinear problems in mechanics
34C25 Periodic solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
34A36 Discontinuous ordinary differential equations
Full Text: DOI
[1] Andreaus, U., Placidi, L. & Rega, G. [2010] “ Numerical simulation of the soft contact dynamics of an impacting bilinear oscillator,” Commun. Nonlin. Sci. Numer. Simul.15, 2603-2616. · Zbl 1222.70020
[2] Andreaus, U., Chiaia, B. & Placidi, L. [2013] “ Soft-impact dynamics of deformable bodies,” Continuum Mech. Therm.25, 375-398. · Zbl 1343.74037
[3] Belardinelli, P. & Lenci, S. [2016] “ An efficient parallel implementation of cell mapping methods for mdof systems,” Nonlin. Dyn.86, 2279-2290.
[4] Belardinelli, P., Lenci, S. & Rega, G. [2018] “ Seamless variation of isometric and anisometric dynamical integrity measures in basins’s erosion,” Commun. Nonlin. Sci. Numer. Simul.56, 499-507.
[5] Brzeski, P., Lazarek, M., Kapitaniak, T., Kurths, J. & Perlikowski, P. [2016] “ Basin stability approach for quantifying responses of multistable systems with parameters mismatch,” Meccanica51, 2713-2726.
[6] Brzeski, P., Pavlovskaia, E., Kapitaniak, T. & Perlikowski, P. [2017a] “ Controlling multistability in coupled systems with soft impacts,” Int. J. Mech. Sci.127, 118-129.
[7] Brzeski, P., Wojewoda, J., Kapitaniak, T., Kurths, J. & Perlikowski, P. [2017b] “ Sample-based approach can outperform the classical dynamical analysis-experimental confirmation of the basin stability method,” Sci. Rep.7, 6121.
[8] Brzeski, P. & Perlikowski, P. [2019] “ Sample-based methods of analysis for multistable dynamical systems,” Arch. Comput. Meth. Eng.26, 1515-1545.
[9] Brzeski, P., Kurths, J. & Perlikowski, P. [2018] “ Time dependent stability margin in multistable systems,” Chaos28, 093104.
[10] Capecchi, D. & Bishop, S. [1994] “ Periodic oscillations and attracting basins for a parametrically excited pendulum,” Dyn. Stabil. Syst.9, 123-143. · Zbl 0807.34056
[11] Chávez, J. P., Brzeski, P. & Perlikowski, P. [2017] “ Bifurcation analysis of non-linear oscillators interacting via soft impacts,” Int. J. Nonlin. Mech.92, 76-83.
[12] Chudzik, A., Perlikowski, P., Stefanski, A. & Kapitaniak, T. [2011] “ Multistability and rare attractors in van der Pol-Duffing oscillator,” Int. J. Bifurcation and Chaos21, 1907-1912. · Zbl 1248.34039
[13] Czołczyński, K., Stefański, A., Perlikowski, P. & Kapitaniak, T. [2009] “ Multistability and chaotic beating of Duffing oscillators suspended on an elastic structure,” J. Sound Vibr.322, 513-523.
[14] Czołczyński, K., Okolewski, A. & Blazejczyk-Okolewska, B. [2017] “ Lyapunov exponents in discrete modeling of a cantilever beam impacting on a moving base,” Int. J. Nonlin. Mech.88, 74-84.
[15] Dankowicz, H. & Piiroinen, P. T. [2002] “ Exploiting discontinuities for stabilization of recurrent motions,” Dyn. Syst.17, 317-342. · Zbl 1063.93040
[16] Daza, A., Wagemakers, A., Georgeot, B., Guéry-Odelin, D. & Sanjuán, M. A. F. [2016] “ Basin entropy: A new tool to analyze uncertainty in dynamical systems,” Sci. Rep.6, 31416. · Zbl 1386.37080
[17] de Souza, S. L. & Caldas, I. L. [2001] “ Basins of attraction and transient chaos in a gear-rattling model,” J. Vibr. Contr.7, 849-862. · Zbl 1032.70014
[18] Ferrer, B., Ivorra, S., Segovia, E. & Irles, R. [2010] “ Tridimensional modelization of the impact of a vehicle against a metallic parking column at a low speed,” Eng. Struct.32, 1986-1992.
[19] Frazier, M. J. & Kochmann, D. M. [2017] “ Band gap transmission in periodic bistable mechanical systems,” J. Sound Vibr.388, 315-326.
[20] Galias, Z. [2017] “ Numerical study of multiple attractors in the parallel inductor-capacitor-memristor circuit,” Int. J. Bifurcation and Chaos27, 1730036-1-16.
[21] Glendinning, P., Kowalczyk, P. & Nordmark, A. B. [2016] “ Multiple attractors in Grazing-Sliding bifurcations in Filippov-type flows,” IMA J. Appl. Math.81, 711-722. · Zbl 1404.37059
[22] Goncalves, P. B., Alves da Silva, F. M. & del Prado, Z. J. [2007] “ Global stability analysis of parametrically excited cylindrical shells through the evolution of basin boundaries,” Nonlin. Dyn.50, 121-145. · Zbl 1181.74061
[23] Harne, R. L. & Goodpaster, B. A. [2018] “ Impedance measures in analysis and characterization of multistable structures subjected to harmonic excitation,” Mech. Syst. Sign. Process.98, 78-90.
[24] Kapitaniak, M., Vaziri, V., Chávez, J. P. & Wiercigroch, M. [2018] “ Experimental studies of forward and backward whirls of drill-string,” Mech. Syst. Sign. Process.100, 454-465.
[25] Klinshov, V. V., Nekorkin, V. I. & Kurths, J. [2015] “ Stability threshold approach for complex dynamical systems,” New J. Phys.18, 013004.
[26] Lenci, S. & Rega, G. [1998] “ Controlling nonlinear dynamics in a two-well impact system. I. Attractors and bifurcation scenario under symmetric excitations,” Int. J. Bifurcation and Chaos8, 2387-2407. · Zbl 0973.34500
[27] Lenci, S. & Rega, G. [2008] “ Competing dynamic solutions in a parametrically excited pendulum: Attractor robustness and basin integrity,” J. Comput. Nonlin. Dyn.3, 041010.
[28] Lenci, S. & Rega, G. [2009] “ Non-linear dynamics of a mechanical system with a frictional unilateral constraint,” Int. J. Nonlin. Mech.44, 658-674.
[29] Lenci, S. & Rega, G. [2011] “ Experimental versus theoretical robustness of rotating solutions in a parametrically excited pendulum: A dynamical integrity perspective,” Physica D240, 814-824. · Zbl 1218.37116
[30] Liang, X., Zuo, M. J. & Feng, Z. [2018] “ Dynamic modeling of gearbox faults: A review,” Mech. Syst. Sign. Process.98, 852-876.
[31] Liao, M., Liu, Y., Chávez, J. P., Chong, A. S. & Wiercigroch, M. [2018] “ Dynamics of vibro-impact drilling with linear and nonlinear rock models,” Int. J. Mech. Sci.146, 200-210.
[32] Li, Q.-H. & Lu, Q.-S. [2003] “ Coexisting periodic orbits in vibro-impacting dynamical systems,” Appl. Math. Mech.24, 261-273. · Zbl 1043.70011
[33] Li, Z., Jiang, J. & Hong, L. [2017] “ Noise-induced transition in a piecewise smooth system by generalized cell mapping method with evolving probabilistic vector,” Nonlin. Dyn.88, 1473-1485.
[34] Liu, Y. & Chávez, J. P. [2017] “ Controlling coexisting attractors of an impacting system via linear augmentation,” Physica D348, 1-11. · Zbl 1376.93050
[35] Liu, Y., Chávez, J. P., Pavlovskaia, E. & Wiercigroch, M. [2018] “ Analysis and control of the dynamical response of a higher order drifting oscillator,” Proc. Roy. Soc. A474, 20170500. · Zbl 1402.93125
[36] Maslennikov, O. V., Nekorkin, V. I. & Kurths, J. [2015] “ Basin stability for burst synchronization in small-world networks of chaotic slow-fast oscillators,” Phys. Rev. E92, 042803.
[37] Menck, P. J., Heitzig, J., Marwan, N. & Kurths, J. [2013] “ How basin stability complements the linear-stability paradigm,” Nat. Phys.9, 89-92.
[38] Menck, P. J., Heitzig, J., Kurths, J. & Schellnhuber, H. J. [2014] “ How dead ends undermine power grid stability,” Nat. Commun.5, 3969.
[39] Noël, J.-P., Esfahani, A. F., Kerschen, G. & Schoukens, J. [2017] “ A nonlinear state-space approach to hysteresis identification,” Mech. Syst. Sign. Process.84, 171-184.
[40] Nusse, H. E. & Yorke, J. A. [1996] “ Basins of attraction,” Science271, 1376-1380. · Zbl 1226.37009
[41] Nusse, H. E. & Yorke, J. [1998] Dynamics: Numerical Explorations, , Vol. 101, Second, revised and enlarged edition (Springer-Verlag, NY).
[42] Parker Eason, R., Dick, J. A. & Nagarajaiah, S. [2014] “ Numerical investigation of coexisting high and low amplitude responses and safe basin erosion for a coupled linear oscillator and nonlinear absorber system,” J. Sound Vibr.333, 3490-3504.
[43] Pisarchik, A. N. & Feudel, U. [2014] “ Control of multistability,” Phys. Rep.540, 167-218. · Zbl 1357.34105
[44] Rega, G. & Lenci, S. [2005] “ Identifying, evaluating, and controlling dynamical integrity measures in non-linear mechanical oscillators,” Nonlin. Anal.: Th. Meth. Appl.63, 902-914. · Zbl 1153.70307
[45] Ruzziconi, L., Lenci, S. & Younis, M. I. [2016] “ Nonlinear phenomena in the single-mode dynamics in an AFM cantilever beam,” ASME 2016 Int. Design Engineering Technical Conf. Computers and Information in Engineering Conf. (American Society of Mechanical Engineers), DETC2016-59571, V006T09A040.
[46] Varshney, V., Sabarathinam, S., Prasad, A. & Thamilmaran, K. [2018] “ Infinite number of hidden attractors in memristor-based autonomous Duffing oscillator,” Int. J. Bifurcation and Chaos28, 1850013-1-13. · Zbl 1388.34028
[47] Yan, Y., Xu, J. & Wiercigroch, M. [2017] “ Basins of attraction of the bistable region of time-delayed cutting dynamics,” Phys. Rev. E96, 032205.
[48] Yanchuk, S., Perlikowski, P., Popovych, O. V. & Tass, P. A. [2011] “ Variability of spatio-temporal patterns in non-homogeneous rings of spiking neurons,” Chaos21, 047511.
[49] Zhusubaliyev, Z. T. & Mosekilde, E. [2015] “ Multistability and hidden attractors in a multilevel DC/DC converter,” Math. Comput. Simul.109, 32-45.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.