zbMATH — the first resource for mathematics

Renormalization group effects in dark matter interactions. (English) Zbl 1435.85007
Summary: We present a renormalization-group (RG) analysis of dark matter interactions with the standard model, where dark matter is allowed to be a component of an electroweak multiplet, and has a mass at or below the electroweak scale. We consider, in addition to the gauge interactions, the complete set of effective operators for dark matter interactions with the standard model above the weak scale, up to and including mass dimension six. We calculate the RG evolution of these operators from the high scale \(\Lambda\) down to the weak scale, and perform the matching to the tower of effective theories below the weak scale. We also summarize the RG evolution below the weak scale and the matching to the nonrelativistic nuclear interactions. We present several numerical examples and show that in certain cases the dark matter – nucleus scattering rate can change by orders of magnitude when the electroweak running is included.
85A40 Astrophysical cosmology
83C56 Dark matter and dark energy
81T17 Renormalization group methods applied to problems in quantum field theory
Full Text: DOI arXiv
[1] J. Bagnasco, M. Dine and S.D. Thomas, Detecting technibaryon dark matter, Phys. Lett.B 320 (1994) 99 [hep-ph/9310290] [INSPIRE].
[2] M. Pospelov and T. ter Veldhuis, Direct and indirect limits on the electromagnetic form-factors of WIMPs, Phys. Lett.B 480 (2000) 181 [hep-ph/0003010] [INSPIRE].
[3] A. Kurylov and M. Kamionkowski, Generalized analysis of weakly interacting massive particle searches, Phys. Rev.D 69 (2004) 063503 [hep-ph/0307185] [INSPIRE].
[4] J. Kopp, T. Schwetz and J. Zupan, Global interpretation of direct Dark Matter searches after CDMS-II results, JCAP02 (2010) 014 [arXiv:0912.4264] [INSPIRE].
[5] J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter direct detection, JCAP11 (2010) 042 [arXiv:1008.1591] [INSPIRE].
[6] V. Cirigliano, M.L. Graesser and G. Ovanesyan, WIMP-nucleus scattering in chiral effective theory, JHEP10 (2012) 025 [arXiv:1205.2695] [INSPIRE].
[7] R.J. Hill and M.P. Solon, Universal behavior in the scattering of heavy, weakly interacting dark matter on nuclear targets, Phys. Lett.B 707 (2012) 539 [arXiv:1111.0016] [INSPIRE].
[8] R.J. Hill and M.P. Solon, WIMP-nucleon scattering with heavy WIMP effective theory, Phys. Rev. Lett.112 (2014) 211602 [arXiv:1309.4092] [INSPIRE].
[9] A.L. Fitzpatrick et al., The effective field theory of dark matter direct detection, JCAP02 (2013) 004 [arXiv:1203.3542] [INSPIRE].
[10] A.L. Fitzpatrick et al., Model independent direct detection analyses, arXiv:1211.2818 [INSPIRE].
[11] J. Menendez, D. Gazit and A. Schwenk, Spin-dependent WIMP scattering off nuclei, Phys. Rev.D 86 (2012) 103511 [arXiv:1208.1094] [INSPIRE].
[12] N. Anand, A.L. Fitzpatrick and W.C. Haxton, Weakly interacting massive particle-nucleus elastic scattering response, Phys. Rev.C 89 (2014) 065501 [arXiv:1308.6288] [INSPIRE].
[13] P. Klos, J. Menéndez, D. Gazit and A. Schwenk, Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents, Phys. Rev.D 88 (2013) 083516 [Erratum ibid.D 89 (2014) 029901] [arXiv:1304.7684] [INSPIRE].
[14] M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP10 (2013) 019 [arXiv:1307.5955] [INSPIRE].
[15] G. Barello, S. Chang and C.A. Newby, A model independent approach to inelastic dark matter scattering, Phys. Rev.D 90 (2014) 094027 [arXiv:1409.0536] [INSPIRE].
[16] R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements, Phys. Rev.D 91 (2015) 043505 [arXiv:1409.8290] [INSPIRE].
[17] R. Catena and P. Gondolo, Global fits of the dark matter-nucleon effective interactions, JCAP09 (2014) 045 [arXiv:1405.2637] [INSPIRE].
[18] M. Hoferichter, P. Klos and A. Schwenk, Chiral power counting of one- and two-body currents in direct detection of dark matter, Phys. Lett.B 746 (2015) 410 [arXiv:1503.04811] [INSPIRE]. · Zbl 1343.81235
[19] M. Hoferichter, P. Klos, J. Menéndez and A. Schwenk, Analysis strategies for general spin-independent WIMP-nucleus scattering, Phys. Rev.D 94 (2016) 063505 [arXiv:1605.08043] [INSPIRE].
[20] F. Bishara, J. Brod, B. Grinstein and J. Zupan, Chiral effective theory of dark matter direct detection, JCAP02 (2017) 009 [arXiv:1611.00368] [INSPIRE]. · Zbl 1383.81144
[21] F. Bishara, J. Brod, B. Grinstein and J. Zupan, From quarks to nucleons in dark matter direct detection, JHEP11 (2017) 059 [arXiv:1707.06998] [INSPIRE]. · Zbl 1383.81144
[22] F. D’Eramo, B.J. Kavanagh and P. Panci, You can hide but you have to run: direct detection with vector mediators, JHEP08 (2016) 111 [arXiv:1605.04917] [INSPIRE].
[23] F. Bishara, J. Brod, B. Grinstein and J. Zupan, DirectDM: a tool for dark matter direct detection, arXiv:1708.02678 [INSPIRE]. · Zbl 1383.81144
[24] F. D’Eramo, B.J. Kavanagh and P. Panci, Probing leptophilic dark sectors with hadronic processes, Phys. Lett.B 771 (2017) 339 [arXiv:1702.00016] [INSPIRE].
[25] J. Brod, B. Grinstein, E. Stamou and J. Zupan, Weak mixing below the weak scale in dark-matter direct detection, JHEP02 (2018) 174 [arXiv:1801.04240] [INSPIRE].
[26] J. Brod, A. Gootjes-Dreesbach, M. Tammaro and J. Zupan, Effective field theory for dark matter direct detection up to dimension seven, JHEP10 (2018) 065 [arXiv:1710.10218] [INSPIRE]. · Zbl 1402.83064
[27] C.-Y. Chen, R.J. Hill, M.P. Solon and A.M. Wijangco, Power corrections to the universal heavy WIMP-nucleon cross section, Phys. Lett.B 781 (2018) 473 [arXiv:1801.08551] [INSPIRE].
[28] J. Kumar and D. Marfatia, Matrix element analyses of dark matter scattering and annihilation, Phys. Rev.D 88 (2013) 014035 [arXiv:1305.1611] [INSPIRE].
[29] Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC, JHEP08 (2011) 018 [arXiv:0912.4511] [INSPIRE].
[30] J. Goodman et al., Gamma ray line constraints on effective theories of dark matter, Nucl. Phys.B 844 (2011) 55 [arXiv:1009.0008] [INSPIRE]. · Zbl 1207.83078
[31] P. Ciafaloni et al., On the importance of electroweak corrections for Majorana dark matter indirect detection, JCAP06 (2011) 018 [arXiv:1104.2996] [INSPIRE].
[32] K. Cheung, P.-Y. Tseng and T.-C. Yuan, Gamma-ray constraints on effective interactions of the dark matter, JCAP06 (2011) 023 [arXiv:1104.5329] [INSPIRE].
[33] K. Cheung, P.-Y. Tseng, Y.-L.S. Tsai and T.-C. Yuan, Global constraints on effective dark matter interactions: relic density, direct detection, indirect detection and collider, JCAP05 (2012) 001 [arXiv:1201.3402] [INSPIRE].
[34] L. Vietze et al., Nuclear structure aspects of spin-independent WIMP scattering off xenon, Phys. Rev.D 91 (2015) 043520 [arXiv:1412.6091] [INSPIRE].
[35] U. Haisch and E. Re, Simplified dark matter top-quark interactions at the LHC, JHEP06 (2015) 078 [arXiv:1503.00691] [INSPIRE].
[36] R.C. Cotta, J.L. Hewett, M.P. Le and T.G. Rizzo, Bounds on dark matter interactions with electroweak gauge bosons, Phys. Rev.D 88 (2013) 116009 [arXiv:1210.0525] [INSPIRE].
[37] G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Phys. Lett.B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].
[38] P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP shines light on dark matter, Phys. Rev.D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].
[39] A. Rajaraman, W. Shepherd, T.M.P. Tait and A.M. Wijangco, LHC bounds on interactions of dark matter, Phys. Rev.D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].
[40] P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev.D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].
[41] D. Racco, A. Wulzer and F. Zwirner, Robust collider limits on heavy-mediator dark matter, JHEP05 (2015) 009 [arXiv:1502.04701] [INSPIRE].
[42] T. Jacques and K. Nordström, Mapping monojet constraints onto simplified dark matter models, JHEP06 (2015) 142 [arXiv:1502.05721] [INSPIRE].
[43] M. Bauer et al., Validity of dark matter effective theory, Phys. Rev.D 95 (2017) 075036 [arXiv:1611.09908] [INSPIRE].
[44] A. Albert et al., Towards the next generation of simplified Dark Matter models, Phys. Dark Univ.16 (2017) 49 [arXiv:1607.06680] [INSPIRE].
[45] J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ.9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].
[46] S. Bruggisser, F. Riva and A. Urbano, The last gasp of dark matter effective theory, JHEP11 (2016) 069 [arXiv:1607.02475] [INSPIRE].
[47] A. De Simone and T. Jacques, Simplified models vs. effective field theory approaches in dark matter searches, Eur. Phys. J.C 76 (2016) 367 [arXiv:1603.08002] [INSPIRE].
[48] F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP02 (2016) 016 [arXiv:1510.02110] [INSPIRE].
[49] G. Busoni et al., Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter, Phys. Dark Univ.27 (2020) 100365 [arXiv:1603.04156] [INSPIRE].
[50] D. Goncalves, P.A.N. Machado and J.M. No, Simplified models for dark matter face their consistent completions, Phys. Rev.D 95 (2017) 055027 [arXiv:1611.04593] [INSPIRE].
[51] N.F. Bell, G. Busoni and I.W. Sanderson, Self-consistent dark matter simplified models with an s-channel scalar mediator, JCAP03 (2017) 015 [arXiv:1612.03475] [INSPIRE].
[52] M. Duerr et al., How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP09 (2016) 042 [arXiv:1606.07609] [INSPIRE].
[53] C. Englert, M. McCullough and M. Spannowsky, S-channel dark matter simplified models and unitarity, Phys. Dark Univ.14 (2016) 48 [arXiv:1604.07975] [INSPIRE].
[54] A.J. Brennan, M.F. McDonald, J. Gramling and T.D. Jacques, Collide and conquer: constraints on simplified dark matter models using Mono-X collider searches, JHEP05 (2016) 112 [arXiv:1603.01366] [INSPIRE].
[55] T. Alanne and F. Goertz, Extended dark matter EFT, arXiv:1712.07626 [INSPIRE].
[56] G. Bertone et al., Identifying WIMP dark matter from particle and astroparticle data, JCAP03 (2018) 026 [arXiv:1712.04793] [INSPIRE].
[57] E. Bernreuther, J. Horak, T. Plehn and A. Butter, Actual physics behind Mono-X, SciPost Phys.5 (2018) 034 [arXiv:1805.11637] [INSPIRE].
[58] D. Gazda, R. Catena and C. Forsśen, Ab initio nuclear response functions for dark matter searches, Phys. Rev.D 95 (2017) 103011 [arXiv:1612.09165] [INSPIRE].
[59] C. Körber, A. Nogga and J. de Vries, First-principle calculations of Dark Matter scattering off light nuclei, Phys. Rev.C 96 (2017) 035805 [arXiv:1704.01150] [INSPIRE].
[60] A. Crivellin, F. D’Eramo and M. Procura, New constraints on dark matter effective theories from standard model loops, Phys. Rev. Lett.112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].
[61] F. D’Eramo and M. Procura, Connecting dark matter UV complete models to direct detection rates via effective field theory, JHEP04 (2015) 054 [arXiv:1411.3342] [INSPIRE].
[62] A. Crivellin, U. Haisch and A. Hibbs, LHC constraints on gauge boson couplings to dark matter, Phys. Rev.D 91 (2015) 074028 [arXiv:1501.00907] [INSPIRE].
[63] U. Haisch, F. Kahlhoefer and E. Re, QCD effects in mono-jet searches for dark matter, JHEP12 (2013) 007 [arXiv:1310.4491] [INSPIRE].
[64] U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP04 (2013) 050 [arXiv:1302.4454] [INSPIRE].
[65] U. Haisch, F. Kahlhoefer and J. Unwin, The impact of heavy-quark loops on LHC dark matter searches, JHEP07 (2013) 125 [arXiv:1208.4605] [INSPIRE].
[66] M.T. Frandsen et al., Loop-induced dark matter direct detection signals from gamma-ray lines, JCAP10 (2012) 033 [arXiv:1207.3971] [INSPIRE].
[67] M. Freytsis and Z. Ligeti, On dark matter models with uniquely spin-dependent detection possibilities, Phys. Rev.D 83 (2011) 115009 [arXiv:1012.5317] [INSPIRE].
[68] J. Hisano, K. Ishiwata, N. Nagata and T. Takesako, Direct detection of electroweak-interacting dark matter, JHEP07 (2011) 005 [arXiv:1104.0228] [INSPIRE]. · Zbl 1298.81471
[69] J. Hisano, K. Ishiwata and N. Nagata, Gluon contribution to the dark matter direct detection, Phys. Rev.D 82 (2010) 115007 [arXiv:1007.2601] [INSPIRE].
[70] M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys.B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
[71] Y. Bai and J. Osborne, Chromo-Rayleigh interactions of dark matter, JHEP11 (2015) 036 [arXiv:1506.07110] [INSPIRE].
[72] N. Weiner and I. Yavin, UV completions of magnetic inelastic and Rayleigh dark matter for the Fermi Line(s), Phys. Rev.D 87 (2013) 023523 [arXiv:1209.1093] [INSPIRE].
[73] G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys.68 (1996) 1125 [hep-ph/9512380] [INSPIRE].
[74] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys.105 (1993) 279. · Zbl 0782.68091
[75] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
[76] A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
[77] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun.140 (2001) 418 [hep-ph/0012260] [INSPIRE]. · Zbl 0994.81082
[78] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun.118 (1999) 153 [hep-ph/9807565] [INSPIRE].
[79] M.J. Dugan and B. Grinstein, On the vanishing of evanescent operators, Phys. Lett.B 256 (1991) 239 [INSPIRE].
[80] J.C. Collins, A.V. Manohar and M.B. Wise, Renormalization of the vector current in QED, Phys. Rev.D 73 (2006) 105019 [hep-th/0512187] [INSPIRE].
[81] R.J. Hill and M.P. Solon, Standard Model anatomy of WIMP dark matter direct detection I: weak-scale matching, Phys. Rev.D 91 (2015) 043504 [arXiv:1401.3339] [INSPIRE].
[82] M.A. Fedderke, J.-Y. Chen, E.W. Kolb and L.-T. Wang, The Fermionic dark matter Higgs portal: an effective field theory approach, JHEP08 (2014) 122 [arXiv:1404.2283] [INSPIRE].
[83] B. Grinstein, The static quark effective theory, Nucl. Phys.B 339 (1990) 253 [INSPIRE].
[84] E. Eichten and B.R. Hill, An effective field theory for the calculation of matrix elements involving heavy quarks, Phys. Lett.B 234 (1990) 511 [INSPIRE].
[85] H. Georgi, An effective field theory for heavy quarks at low-energies, Phys. Lett.B 240 (1990) 447 [INSPIRE].
[86] A. Berlin, D.S. Robertson, M.P. Solon and K.M. Zurek, Bino variations: effective field theory methods for dark matter direct detection, Phys. Rev.D 93 (2016) 095008 [arXiv:1511.05964] [INSPIRE].
[87] M.E. Luke and A.V. Manohar, Reparametrization invariance constraints on heavy particle effective field theories, Phys. Lett.B 286 (1992) 348 [hep-ph/9205228] [INSPIRE].
[88] J. Hisano, R. Nagai and N. Nagata, Effective theories for dark matter nucleon scattering, JHEP05 (2015) 037 [arXiv:1502.02244] [INSPIRE]. · Zbl 1388.83920
[89] J. Kopp, V. Niro, T. Schwetz and J. Zupan, DAMA/LIBRA and leptonically interacting Dark Matter, Phys. Rev.D 80 (2009) 083502 [arXiv:0907.3159] [INSPIRE].
[90] K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to \(O \left({\alpha}_S^3\right)\) and their connection to low-energy theorems, Nucl. Phys.B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
[91] L. Baudis et al., Signatures of dark matter scattering inelastically off nuclei, Phys. Rev.D 88 (2013) 115014 [arXiv:1309.0825] [INSPIRE].
[92] T. Banks, J.-F. Fortin and S. Thomas, Direct detection of dark matter electromagnetic dipole moments, arXiv:1007.5515 [INSPIRE].
[93] S. Kang, S. Scopel, G. Tomar and J.-H. Yoon, Present and projected sensitivities of Dark Matter direct detection experiments to effective WIMP-nucleus couplings, Astropart. Phys.109 (2019) 50 [arXiv:1805.06113] [INSPIRE].
[94] QCDSF collaboration, Strangeness contribution to the proton spin from lattice QCD, Phys. Rev. Lett.108 (2012) 222001 [arXiv:1112.3354] [INSPIRE].
[95] M. Engelhardt, Strange quark contributions to nucleon mass and spin from lattice QCD, Phys. Rev.D 86 (2012) 114510 [arXiv:1210.0025] [INSPIRE].
[96] T. Bhattacharya, R. Gupta and B. Yoon, Disconnected quark loop contributions to nucleon structure, PoS(LATTICE2014)141 [arXiv:1503.05975] [INSPIRE].
[97] C. Alexandrou et al., Nucleon axial form factors using N_f= 2 twisted mass fermions with a physical value of the pion mass, Phys. Rev.D 96 (2017) 054507 [arXiv:1705.03399] [INSPIRE].
[98] M.V. Polyakov, A. Schafer and O.V. Teryaev, The intrinsic charm contribution to the proton spin, Phys. Rev.D 60 (1999) 051502 [hep-ph/9812393] [INSPIRE].
[99] L.F. Abbott, The background field method beyond one loop, Nucl. Phys.B 185 (1981) 189 [INSPIRE].
[100] L.F. Abbott, Introduction to the background field method, Acta Phys. Polon.B 13 (1982) 33 [INSPIRE].
[101] A. Denner, G. Weiglein and S. Dittmaier, Application of the background field method to the electroweak standard model, Nucl. Phys.B 440 (1995) 95 [hep-ph/9410338] [INSPIRE].
[102] Particle Data Group collaboration, Review of particle physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
[103] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the standard model Lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE]. · Zbl 1291.81452
[104] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and lambda dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. · Zbl 1342.81344
[105] E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. · Zbl 1342.81344
[106] R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE].
[107] H. Simma, Equations of motion for effective Lagrangians and penguins in rare B decays, Z. Phys.C 61 (1994) 67 [hep-ph/9307274] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.