zbMATH — the first resource for mathematics

Strong dark matter self-interaction from a stable scalar mediator. (English) Zbl 1435.85008
Summary: In face of the small-scale structure problems of the collisionless cold dark matter (DM) paradigm, a popular remedy is to introduce a strong DM self-interaction which can be generated nonperturbatively by a MeV-scale light mediator. However, if such a mediator is unstable and decays into SM particles, the model is severely constrained by the DM direct and indirect detection experiments. In the present paper, we study a model of a self-interacting fermionic DM, endowed with a light stable scalar mediator. In this model, the DM relic abundance is dominated by the fermionic DM particle which is generated mainly via the freeze-out of its annihilations to the stable mediator. Since this channel is invisible, the DM indirect detection constraints should be greatly relaxed. Furthermore, the direct detection signals are suppressed to an unobservable level since fermionic DM scatterings with a nucleon appear at one-loop level. By further studying the bounds from the CMB, supernovae and BBN on the visible channels involving the dark sector, we show that there is a large parameter space which can generate appropriate DM self-interactions at dwarf galaxy scales, while remaining compatible with other experimental constraints.
85A40 Astrophysical cosmology
83C56 Dark matter and dark energy
Full Text: DOI arXiv
[1] Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001 [INSPIRE].
[2] Bergstrom, L., Dark Matter Evidence, Particle Physics Candidates and Detection Methods, Annalen Phys., 524, 479 (2012)
[3] G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept.405 (2005) 279 [hep-ph/0404175] [INSPIRE].
[4] Feng, JL, Dark Matter Candidates from Particle Physics and Methods of Detection, Ann. Rev. Astron. Astrophys., 48, 495 (2010)
[5] Moore, B., Evidence against dissipationless dark matter from observations of galaxy haloes, Nature, 370, 629 (1994)
[6] R.A. Flores and J.R. Primack, Observational and theoretical constraints on singular dark matter halos, Astrophys. J.427 (1994) L1 [astro-ph/9402004] [INSPIRE].
[7] Oh, S-H; de Blok, WJG; Brinks, E.; Walter, F.; Kennicutt, RC Jr, Dark and luminous matter in THINGS dwarf galaxies, Astron. J., 141, 193 (2011)
[8] Walker, MG; Penarrubia, J., A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies, Astrophys. J., 742, 20 (2011)
[9] Boylan-Kolchin, M.; Bullock, JS; Kaplinghat, M., Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc., 415, L40 (2011)
[10] Boylan-Kolchin, M.; Bullock, JS; Kaplinghat, M., The Milky Way’s bright satellites as an apparent failure of LCDM, Mon. Not. Roy. Astron. Soc., 422, 1203 (2012)
[11] A.A. de Laix, R.J. Scherrer and R.K. Schaefer, Constraints of selfinteracting dark matter, Astrophys. J.452 (1995) 495 [astro-ph/9502087] [INSPIRE].
[12] D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett.84 (2000) 3760 [astro-ph/9909386] [INSPIRE].
[13] Vogelsberger, M.; Zavala, J.; Loeb, A., Subhaloes in Self-Interacting Galactic Dark Matter Haloes, Mon. Not. Roy. Astron. Soc., 423, 3740 (2012)
[14] Zavala, J.; Vogelsberger, M.; Walker, MG, Constraining Self-Interacting Dark Matter with the Milky Way’s dwarf spheroidals, Mon. Not. Roy. Astron. Soc., 431, L20 (2013)
[15] Rocha, M., Cosmological Simulations with Self-Interacting Dark Matter I: Constant Density Cores and Substructure, Mon. Not. Roy. Astron. Soc., 430, 81 (2013)
[16] A.H.G. Peter, M. Rocha, J.S. Bullock and M. Kaplinghat, Cosmological Simulations with Self-Interacting Dark Matter II: Halo Shapes vs. Observations, Mon. Not. Roy. Astron. Soc.430 (2013) 105 [arXiv:1208.3026] [INSPIRE].
[17] M. Kaplinghat, S. Tulin and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett.116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].
[18] Tulin, S.; Yu, H-B, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept., 730, 1 (2018) · Zbl 1381.83158
[19] Governato, F., Cuspy No More: How Outflows Affect the Central Dark Matter and Baryon Distribution in Lambda CDM Galaxies, Mon. Not. Roy. Astron. Soc., 422, 1231 (2012)
[20] Brooks, AM; Zolotov, A., Why Baryons Matter: The Kinematics of Dwarf Spheroidal Satellites, Astrophys. J., 786, 87 (2014)
[21] D. Clowe, A. Gonzalez and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J.604 (2004) 596 [astro-ph/0312273] [INSPIRE].
[22] M. Markevitch et al., Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56, Astrophys. J.606 (2004) 819 [astro-ph/0309303] [INSPIRE].
[23] Randall, SW; Markevitch, M.; Clowe, D.; Gonzalez, AH; Bradac, M., Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J., 679, 1173 (2008)
[24] Harvey, D.; Massey, R.; Kitching, T.; Taylor, A.; Tittley, E., The non-gravitational interactions of dark matter in colliding galaxy clusters, Science, 347, 1462 (2015)
[25] Kahlhoefer, F.; Schmidt-Hoberg, K.; Frandsen, MT; Sarkar, S., Colliding clusters and dark matter self-interactions, Mon. Not. Roy. Astron. Soc., 437, 2865 (2014)
[26] Wittman, D.; Golovich, N.; Dawson, WA, The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters, Astrophys. J., 869, 104 (2018)
[27] L. Ackerman, M.R. Buckley, S.M. Carroll and M. Kamionkowski, Dark Matter and Dark Radiation, Phys. Rev.D 79 (2009) 023519 [arXiv:0810.5126] [INSPIRE].
[28] Feng, JL; Kaplinghat, M.; Tu, H.; Yu, H-B, Hidden Charged Dark Matter, JCAP, 07, 004 (2009)
[29] M.R. Buckley and P.J. Fox, Dark Matter Self-Interactions and Light Force Carriers, Phys. Rev.D 81 (2010) 083522 [arXiv:0911.3898] [INSPIRE].
[30] Loeb, A.; Weiner, N., Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential, Phys. Rev. Lett., 106, 171302 (2011)
[31] Feng, JL; Kaplinghat, M.; Yu, H-B, Halo Shape and Relic Density Exclusions of Sommerfeld-Enhanced Dark Matter Explanations of Cosmic Ray Excesses, Phys. Rev. Lett., 104, 151301 (2010)
[32] Tulin, S.; Yu, H-B; Zurek, KM, Resonant Dark Forces and Small Scale Structure, Phys. Rev. Lett., 110, 111301 (2013)
[33] Tulin, S.; Yu, H-B; Zurek, KM, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev., D 87, 115007 (2013)
[34] Cyr-Racine, F-Y; Sigurdson, K.; Zavala, J.; Bringmann, T.; Vogelsberger, M.; Pfrommer, C., ETHOS — an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe, Phys. Rev., D 93, 123527 (2016)
[35] van den Aarssen, LG; Bringmann, T.; Pfrommer, C., Is dark matter with long-range interactions a solution to all small-scale problems of ΛCDM cosmology?, Phys. Rev. Lett., 109, 231301 (2012)
[36] Nozzoli, F., A balance for Dark Matter bound states, Astropart. Phys., 91, 22 (2017)
[37] Feng, JL; Tu, H.; Yu, H-B, Thermal Relics in Hidden Sectors, JCAP, 10, 043 (2008)
[38] R. Foot and S. Vagnozzi, Dissipative hidden sector dark matter, Phys. Rev.D 91 (2015) 023512 [arXiv:1409.7174] [INSPIRE]. · Zbl 1345.81153
[39] A. Berlin, D. Hooper and G. Krnjaic, Thermal Dark Matter From A Highly Decoupled Sector, Phys. Rev.D 94 (2016) 095019 [arXiv:1609.02555] [INSPIRE].
[40] Evans, JA; Gori, S.; Shelton, J., Looking for the WIMP Next Door, JHEP, 02, 100 (2018)
[41] Bringmann, T.; Kahlhoefer, F.; Schmidt-Hoberg, K.; Walia, P., Strong constraints on self-interacting dark matter with light mediators, Phys. Rev. Lett., 118, 141802 (2017)
[42] Cirelli, M.; Panci, P.; Petraki, K.; Sala, F.; Taoso, M., Dark Matter’s secret liaisons: phenomenology of a dark U(1) sector with bound states, JCAP, 05, 036 (2017)
[43] Planck collaboration, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys.594 (2016) A13 [arXiv:1502.01589] [INSPIRE].
[44] N. Padmanabhan and D.P. Finkbeiner, Detecting dark matter annihilation with CMB polarization: Signatures and experimental prospects, Phys. Rev.D 72 (2005) 023508 [astro-ph/0503486] [INSPIRE].
[45] T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results, Phys. Rev.D 93 (2016) 023527 [arXiv:1506.03811] [INSPIRE].
[46] T.R. Slatyer, Indirect Dark Matter Signatures in the Cosmic Dark Ages II. Ionization, Heating and Photon Production from Arbitrary Energy Injections, Phys. Rev.D 93 (2016) 023521 [arXiv:1506.03812] [INSPIRE].
[47] Poulin, V.; Lesgourgues, J.; Serpico, PD, Cosmological constraints on exotic injection of electromagnetic energy, JCAP, 03, 043 (2017)
[48] Fermi-LAT collaboration, Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data, Phys. Rev. Lett.115 (2015) 231301 [arXiv:1503.02641] [INSPIRE].
[49] AMS collaboration, Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett.113 (2014) 121102 [INSPIRE].
[50] AMS collaboration, High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-500 GeV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett.113 (2014) 121101 [INSPIRE].
[51] Bergstrom, L.; Bringmann, T.; Cholis, I.; Hooper, D.; Weniger, C., New Limits on Dark Matter Annihilation from AMS Cosmic Ray Positron Data, Phys. Rev. Lett., 111, 171101 (2013)
[52] D. Hooper and W. Xue, Possibility of Testing the Light Dark Matter Hypothesis with the Alpha Magnetic Spectrometer, Phys. Rev. Lett.110 (2013) 041302 [arXiv:1210.1220] [INSPIRE].
[53] A. Ibarra, A.S. Lamperstorfer and J. Silk, Dark matter annihilations and decays after the AMS-02 positron measurements, Phys. Rev.D 89 (2014) 063539 [arXiv:1309.2570] [INSPIRE].
[54] Kahlhoefer, F.; Schmidt-Hoberg, K.; Wild, S., Dark matter self-interactions from a general spin-0 mediator, JCAP, 08, 003 (2017)
[55] XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett.121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
[56] K. Kainulainen, K. Tuominen and V. Vaskonen, Self-interacting dark matter and cosmology of a light scalar mediator, Phys. Rev.D 93 (2016) 015016 [Erratum ibid.D 95 (2017) 079901] [arXiv:1507.04931] [INSPIRE].
[57] M. Kaplinghat, S. Tulin and H.-B. Yu, Direct Detection Portals for Self-interacting Dark Matter, Phys. Rev.D 89 (2014) 035009 [arXiv:1310.7945] [INSPIRE].
[58] M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on MeV-scale dark sectors. Part II. Electromagnetic decays, JCAP11 (2018) 032 [arXiv:1808.09324] [INSPIRE].
[59] Duch, M.; Grzadkowski, B.; Huang, D., Strongly self-interacting vector dark matter via freeze-in, JHEP, 01, 020 (2018) · Zbl 1384.85001
[60] Duch, M.; Grzadkowski, B.; Huang, D., Freeze-in Region for Self-interacting Vector Dark Matter, Acta Phys. Polon., B 48, 2397 (2017)
[61] Bernal, N.; Chu, X.; Garcia-Cely, C.; Hambye, T.; Zaldivar, B., Production Regimes for Self-Interacting Dark Matter, JCAP, 03, 018 (2016)
[62] Blennow, M.; Clementz, S.; Herrero-Garcia, J., Self-interacting inelastic dark matter: A viable solution to the small scale structure problems, JCAP, 03, 048 (2017)
[63] Baldes, I.; Cirelli, M.; Panci, P.; Petraki, K.; Sala, F.; Taoso, M., Asymmetric dark matter: residual annihilations and self-interactions, SciPost Phys., 4, 041 (2018)
[64] T. Bringmann, F. Kahlhoefer, K. Schmidt-Hoberg and P. Walia, Converting nonrelativistic dark matter to radiation, Phys. Rev.D 98 (2018) 023543 [arXiv:1803.03644] [INSPIRE].
[65] Ma, E., Inception of Self-Interacting Dark Matter with Dark Charge Conjugation Symmetry, Phys. Lett., B 772, 442 (2017)
[66] Kumar Barman, R.; Bhattacherjee, B.; Chatterjee, A.; Choudhury, A.; Gupta, A., Scope of self-interacting thermal WIMPs in a minimal U(1)_Dextension and its future prospects, JHEP, 05, 177 (2019)
[67] A. Caputo and M. Reig, Cosmic implications of a low-scale solution to the axion domain wall problem, Phys. Rev.D 100 (2019) 063530 [arXiv:1905.13116] [INSPIRE].
[68] Ahmed, A.; Duch, M.; Grzadkowski, B.; Iglicki, M., Multi-Component Dark Matter: the vector and fermion case, Eur. Phys. J., C 78, 905 (2018)
[69] Duerr, M.; Schmidt-Hoberg, K.; Wild, S., Self-interacting dark matter with a stable vector mediator, JCAP, 09, 033 (2018)
[70] R.J. Scherrer and M.S. Turner, Primordial Nucleosynthesis with Decaying Particles. 1. Entropy Producing Decays. 2. Inert Decays, Astrophys. J.331 (1988) 19 [INSPIRE].
[71] M. Hufnagel, K. Schmidt-Hoberg and S. Wild, BBN constraints on MeV-scale dark sectors. Part I. Sterile decays, JCAP02 (2018) 044 [arXiv:1712.03972] [INSPIRE].
[72] Cai, Y.; Spray, AP, Fermionic Semi-Annihilating Dark Matter, JHEP, 01, 087 (2016)
[73] Sommerfeld, A., Über die Beugung und Bremsung der Elektronen, Annals Phys., 403, 257 (1931) · Zbl 0003.14204
[74] Cassel, S., Sommerfeld factor for arbitrary partial wave processes, J. Phys., G 37, 105009 (2010)
[75] R. Iengo, Sommerfeld enhancement for a Yukawa potential, arXiv:0903.0317 [INSPIRE].
[76] Slatyer, TR, The Sommerfeld enhancement for dark matter with an excited state, JCAP, 02, 028 (2010)
[77] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun.176 (2007) 367 [hep-ph/0607059] [INSPIRE]. · Zbl 1196.81050
[78] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs4.1: two dark matter candidates, Comput. Phys. Commun.192 (2015) 322 [arXiv:1407.6129] [INSPIRE].
[79] Zeldovich, YB; Sunyaev, RA, The Interaction of Matter and Radiation in a Hot-Model Universe, Astrophys. Space Sci., 4, 301 (1969)
[80] Hu, W.; Silk, J., Thermalization constraints and spectral distortions for massive unstable relic particles, Phys. Rev. Lett., 70, 2661 (1993)
[81] Chluba, J.; Sunyaev, RA, The evolution of CMB spectral distortions in the early Universe, Mon. Not. Roy. Astron. Soc., 419, 1294 (2012)
[82] CHARM collaboration, Search for Axion Like Particle Production in 400 GeV Proton-Copper Interactions, Phys. Lett.157B (1985) 458 [INSPIRE].
[83] Clarke, JD; Foot, R.; Volkas, RR, Phenomenology of a very light scalar (100 MeV < m_h< 10 GeV) mixing with the SM Higgs, JHEP, 02, 123 (2014)
[84] G. Krnjaic, Probing Light Thermal Dark-Matter With a Higgs Portal Mediator, Phys. Rev.D 94 (2016) 073009 [arXiv:1512.04119] [INSPIRE].
[85] Turner, MS, Axions from SN 1987a, Phys. Rev. Lett., 60, 1797 (1988)
[86] Frieman, JA; Dimopoulos, S.; Turner, MS, Axions and Stars, Phys. Rev., D 36, 2201 (1987)
[87] Burrows, A.; Turner, MS; Brinkmann, RP, Axions and SN 1987a, Phys. Rev., D 39, 1020 (1989)
[88] Ishizuka, N.; Yoshimura, M., Axion and Dilaton Emissivity From Nascent Neutron Stars, Prog. Theor. Phys., 84, 233 (1990)
[89] Essig, R.; Harnik, R.; Kaplan, J.; Toro, N., Discovering New Light States at Neutrino Experiments, Phys. Rev., D 82, 113008 (2010)
[90] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
[91] A. Fradette and M. Pospelov, BBN for the LHC: constraints on lifetimes of the Higgs portal scalars, Phys. Rev.D 96 (2017) 075033 [arXiv:1706.01920] [INSPIRE].
[92] J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, Update on scalar singlet dark matter, Phys. Rev.D 88 (2013) 055025 [Erratum ibid.D 92 (2015) 039906] [arXiv:1306.4710] [INSPIRE].
[93] Li, T.; Miao, S.; Zhou, Y-F, Light mediators in dark matter direct detections, JCAP, 03, 032 (2015)
[94] Geng, C-Q; Huang, D.; Lee, C-H; Wang, Q., Direct Detection of Exothermic Dark Matter with Light Mediator, JCAP, 08, 009 (2016)
[95] J.M. Alarcon, J. Martin Camalich and J.A. Oller, The chiral representation of the πN scattering amplitude and the pion-nucleon sigma term, Phys. Rev.D 85 (2012) 051503 [arXiv:1110.3797] [INSPIRE].
[96] Ren, X-L; Ling, X-Z; Geng, L-S, Pion-nucleon sigma term revisited in covariant baryon chiral perturbation theory, Phys. Lett., B 783, 7 (2018)
[97] R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev.D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].
[98] R. Essig, T. Volansky and T.-T. Yu, New Constraints and Prospects for sub-GeV Dark Matter Scattering off Electrons in Xenon, Phys. Rev.D 96 (2017) 043017 [arXiv:1703.00910] [INSPIRE].
[99] K. Agashe, Y. Cui, L. Necib and J. Thaler, (In)direct Detection of Boosted Dark Matter, JCAP10 (2014) 062 [arXiv:1405.7370] [INSPIRE].
[100] McKeen, D.; Raj, N., Monochromatic dark neutrinos and boosted dark matter in noble liquid direct detection, Phys. Rev., D 99, 103003 (2019)
[101] Bringmann, T.; Pospelov, M., Novel direct detection constraints on light dark matter, Phys. Rev. Lett., 122, 171801 (2019)
[102] Elor, G.; Rodd, NL; Slatyer, TR; Xue, W., Model-Independent Indirect Detection Constraints on Hidden Sector Dark Matter, JCAP, 06, 024 (2016)
[103] N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane and T.J. Weiler, Enhancing Dark Matter Annihilation Rates with Dark Bremsstrahlung, Phys. Rev.D 96 (2017) 023011 [arXiv:1705.01105] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.