zbMATH — the first resource for mathematics

Visualization of data: methods, software, and applications. (English) Zbl 1442.62769
Singh, Vinai K. (ed.) et al., Advances in mathematical methods and high performance computing. Cham: Springer. Adv. Mech. Math. 41, 295-307 (2019).
Summary: Visualization is a part of data science, and essential to enable sophisticated analysis of data. The visualization ensures the human participation in most decisions when analyzing data. In this paper, we review methods and software for visualization of multidimensional data. The emphasis is put on the web-based DAMIS solution for data analysis, allowing researchers to carry out the primary data analysis and to investigate the projection of multidimensional data on a plane, the similarities between the data items, the influence of individual features, and their relationships by visual analysis techniques, using the high-performance computing resources. DAMIS is applied to the visual efficiency analysis of regional economic development to evaluate how regional resources are reflected in the economic results. The projection methods (principal component analysis, multidimensional scaling) and artificial neural networks (self-organizing map, SAMANN) are the core strategies for the analysis.
For the entire collection see [Zbl 06982489].

62R07 Statistical aspects of big data and data science
62A09 Graphical methods
62H25 Factor analysis and principal components; correspondence analysis
62M45 Neural nets and related approaches to inference from stochastic processes
62P20 Applications of statistics to economics
62-08 Computational methods for problems pertaining to statistics
Full Text: DOI
[1] MIDAS: The National Open Access Research Data Archive. https://doi.org/10.18279/MIDAS.RegionalData.xlsx.30026
[2] Bai, J.: On regional innovation efficiency: evidence from panel data of China’s different provinces. Regional Studies 47(5), 773-788 (2013)
[3] Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing systems, pp. 585-591 (2002)
[4] Bengoa, M., Martínez-San Román, V., Pérez, P.: Do R&D activities matter for productivity? A regional spatial approach assessing the role of human and social capital. Economic Modelling 60, 448-461 (2017)
[5] Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Studies in Classification, Data Analysis, and Knowledge Organization. Springer (2007). https://doi.org/10.1007/978-3-540-78246-9_38
[6] Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer (2005). https://doi.org/10.1007/0-387-28981-X · Zbl 1085.62079
[7] Borg, I., Groenen, P.J., Mair, P.: Applied Multidimensional Scaling. Springer Science & Business Media (2012) · Zbl 1416.62017
[8] Cai, Y., Hanley, A.: Innovation rankings: good, bad or revealing? Applied Economics Letters 21(5), 325-328 (2014)
[9] Daouia, A., Florens, J.P., Simar, L.: Regularization of nonparametric frontier estimators. Journal of Econometrics 168(2), 285-299 (2012) · Zbl 1443.62074
[10] Daraio, C., Simar, L.: Introducing environmental variables in nonparametric frontier models: a probabilistic approach. Journal of Productivity Analysis 24(1), 93-121 (2005)
[11] Demšar, J., Curk, T., Erjavec, A., Gorup, C., Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., Zupan, B.: Orange: Data mining toolbox in Python. Journal of Machine Learning Research 14, 2349-2353 (2013) · Zbl 1317.68151
[12] Dubitzky, W. (ed.): Data Mining Techniques in Grid Computing Environments. John Wiley and Sons, Ltd (2009). https://doi.org/10.1002/9780470699904.ch1
[13] Dzemyda, G.: Visualization of a set of parameters characterized by their correlation matrix. Computational Statistics & Data Analysis 36(1), 15-30 (2001) · Zbl 1080.62500
[14] Dzemyda, G., Kurasova, O.: Heuristic approach for minimizing the projection error in the integrated mapping. European Journal of Operational Research 171(3), 859-878 (2006). https://doi.org/10.1016/j.ejor.2004.09.011 · Zbl 1116.90117
[15] Dzemyda, G., Kurasova, O., Medvedev, V.: Dimension reduction and data visualization using neural networks. In: I. Maglogiannis, K. Karpouzis, M. Wallace, J. Soldatos (eds.) Emerging Artificial Intelligence Applications in Computer Engineering, Frontiers in Artificial Intelligence and Applications, vol. 160, pp. 25-49. IOS Press (2007)
[16] Dzemyda, G., Kurasova, O., Žilinskas, J.: Multidimensional Data Visualization: Methods and Applications, Springer Optimization and its Applications, vol. 75. Springer (2013). https://doi.org/10.1007/978-1-4419-0236-8 · Zbl 1337.68001
[17] Dzemydaitė, G., Dzemyda, I., Galinienė, B.: The efficiency of regional innovation systems in new member states of the European Union: a nonparametric DEA approach. Economics and Business 28(1), 83-89 (2016)
[18] Dzemydaitė, G., Galinienė, B.: Evaluation of regional efficiency disparities by efficient frontier analysis. Ekonomika 92(4), 21 (2013)
[19] Eurostat-European Commission and others: Regions in the European Union. Nomenclature of territorial units for statistics. Tech. rep., NUTS 2010/EU-27. Luxemburgo: Publications Office of the European Union (2011)
[20] Farrell, M.J.: The measurement of productive efficiency. Journal of the Royal Statistical Society. Series A (General) 120(3), 253-290 (1957)
[21] Groenen, P., Borg, I.: Past, present, and future of multidimensional scaling. Visualization and Verbalization of Data pp. 95-117 (2014)
[22] Groenen, P.J., van de Velden, M.: Multidimensional scaling by majorization: A review. Journal of Statistical Software 73(8), 1-26 (2016)
[23] Guan, J., Chen, K.: Modeling the relative efficiency of national innovation systems. Research Policy 41(1), 102-115 (2012)
[24] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: An update. SIGKDD Explorations Newsletter 11(1), 10-18 (2009). https://doi.org/10.1145/1656274.1656278
[25] Hofmann, M., Klinkenberg, R.: RapidMiner: Data Mining Use Cases and Business Analytics Applications. Chapman & Hall/CRC (2013)
[26] Jolliffe, I.: Principal Component Analysis. Springer, Berlin (1986). https://doi.org/10.1007/b98835 · Zbl 1011.62064
[27] Kohonen, T.: Overture. In: Self-Organizing Neural Networks: Recent Advances and Applications, pp. 1-12. Springer-Verlag, New York, NY, USA (2002)
[28] Kurasova, O., Molytė, A.: Integration of the self-organizing map and neural gas with multidimensional scaling. Information Technology and Control 40(1), 12-20 (2011)
[29] Kurasova, O., Molytė, A.: Quality of quantization and visualization of vectors obtained by neural gas and self-organizing map. Informatica 22(1), 115-134 (2011)
[30] Mao, J., Jain, A.K.: Artificial neural networks for feature extraction and multivariate data projection. IEEE Transactions on Neural Networks 6(2), 296-317 (1995). https://doi.org/10.1109/72.363467
[31] Medvedev, V., Dzemyda, G., Kurasova, O., Marcinkevičius, V.: Efficient data projection for visual analysis of large data sets using neural networks. Informatica 22(4), 507-520 (2011) · Zbl 1271.68204
[32] Medvedev, V., Kurasova, O., Bernatavičienė, J., Treigys, P., Marcinkevičius, V., Dzemyda, G.: A new web-based solution for modelling data mining processes. Simulation Modelling Practice and Theory (2017) · Zbl 1355.65021
[33] Schaffer, A., Simar, L., Rauland, J.: Decomposing regional efficiency. Journal of Regional Science 51(5), 931-947 (2011)
[34] Talia, D., Trunfio, P.: Service-oriented Distributed Knowledge Discovery. Chapman and Hall/CRC (2012). https://doi.org/10.1201/b12990-4
[35] Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319-2323 (2000)
[36] Venskus, J., Treigys, P., Bernataviciene, J., Medvedev, V., Vozňák, M., Kurmis, M., Bulbenkiene, V.: Integration of a self-organizing map and a virtual pheromone for real-time abnormal movement detection in marine traffic. Informatica 28(2), 359-374 (2017)
[37] Vila, L.E., Cabrer, B., Pavía, J.M.: On the relationship between knowledge creation and economic performance. Technological and Economic Development of Economy 21(4), 539-556 (2015)
[38] Žilinskas, J. · Zbl 1259.90126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.