## On Kurzweil-Stieltjes equiintegrability and generalized BV functions.(English)Zbl 07217263

The main result of the present paper provides sufficient conditions for Kurzweil-Stieltjes equiiintegrability of a sequence of functions $$\{f_n\}_{n=1}^\infty$$ with respect to a function $$g:[a,b]\to\mathbb{R}$$, which is regulated, left-continuous, and has generalized bounded variation.
It is assumed that the sequence $$\{f_n\}_{n=1}^\infty$$ is pointwise bounded, the Kurzweil-Stieltjes integrals $$\int_a^b f_n\,\mathrm{d}g$$ exist for all $$n\in\mathbb{N}$$, and the indefinite integrals $$F_n(t)=\int_a^t f_n\,\mathrm{d}g$$ have the following properties:
1
$$\{F_n\}_{n=1}^\infty$$ is equiregulated.
2
$$\{F_n\}_{n=1}^\infty$$ is uniformly $$g$$-normal.
3
$$\{F_n\}_{n=1}^\infty$$ is uniformly $$g$$-differentiable (in the sense of Stieltjes derivatives) on $$[a,b]\setminus Z$$, where the variational measure of $$Z$$ is zero.

It is shown that these conditions imply uniform integrability of $$\{f_n\}_{n=1}^\infty$$ with respect to $$g$$. Moreover, if $$\{f_n\}_{n=1}^\infty$$ has a pointwise limit $$f$$, then the integral $$\int_a^b f\,\mathrm{d}g$$ exists and equals $$\lim_{n\to\infty}\int_a^b f_n\,\mathrm{d}g$$.
The author also shows that the first and second condition of the main result cannot be dropped.

### MSC:

 26A39 Denjoy and Perron integrals, other special integrals 26A42 Integrals of Riemann, Stieltjes and Lebesgue type 26A45 Functions of bounded variation, generalizations 26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems
Full Text:

### References:

 [1] Bongiorno, B.; Piazza, L. Di, Convergence theorems for generalized Riemann-Stieltjes integrals, Real Anal. Exch. 17 (1991-92), 339-361 · Zbl 0758.26006 [2] Bongiorno, B.; Piazza, L. Di; Skvortsov, V., A new full descriptive characterization of \hbox{Denjoy-Perron} integral, Real Anal. Exch. 21 (1995-96), 656-663 · Zbl 0879.26026 [3] Faure, C.-A., A descriptive definition of the KH-Stieltjes integral, Real Anal. Exch. 23 (1998-99), 113-124 · Zbl 0944.26014 [4] Fraňková, D., Regulated functions, Math. Bohem. 116 (1991), 20-59 · Zbl 0724.26009 [5] Frigon, M.; Pouso, R. L., Theory and applications of first-order systems of Stieltjes differential equations, Adv. Nonlinear Anal. 6 (2017), 13-36 · Zbl 1361.34010 [6] Gordon, R. A., Another look at a convergence theorem for the Henstock integral, Real Anal. Exch. 15 (1989-90), 724-728 · Zbl 0708.26005 [7] Gordon, R. A., The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Graduate Studies in Mathematics 4. AMS, Providence (1994) · Zbl 0807.26004 [8] Hoffmann, H., Descriptive Characterisation of the Variational Henstock-Kurzweil-Stieltjes Integral and Applications, PhD thesis. Karlsruher Institue of Technology, Karlsruhe. Available at https://publikationen.bibliothek.kit.edu/1000046600 (2014) [9] Kurzweil, J.; Jarník, J., Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exch. 17 (1991-92), 110-139 · Zbl 0754.26003 [10] Lee, P. Y., Lanzhou Lectures on Henstock Integration, Series in Real Analysis 2. World Scientific, London (1989) · Zbl 0699.26004 [11] Monteiro, G. A.; Satco, B., Distributional, differential and integral problems: equivalence and existence results, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), Paper No. 7, 26 pages · Zbl 1413.34062 [12] Monteiro, G. A.; Slavík, A.; Tvrdý, M., Kurzweil-Stieltjes Integral. Theory and Applications, Series in Real Analysis 15. World Scientific, Hackensack (2019) · Zbl 1437.28001 [13] Pouso, R. L.; Rodríguez, A., A new unification of continuous, discrete, and impulsive calculus through Stieltjes derivatives, Real Anal. Exch. 40 (2015), 319-354 · Zbl 1384.26024 [14] Saks, S., Theory of the Integral. With two additional notes by Stefan Banach, Monografie Matematyczne Tom. 7. G. E. Stechert & Co., New York (1937) · Zbl 0017.30004 [15] Satco, B.-R., Measure integral inclusions with fast oscillating data, Electron. J. Differ. Equ. 2015 (2015), Paper No. 107, 13 pages · Zbl 1314.45005 [16] Schwabik, Š., Variational measures and the Kurzweil-Henstock integral, Math. Slovaca 59 (2009), 731-752 · Zbl 1212.26014 [17] Schwabik, Š., General integration and extensions I, Czech. Math. J. 60 (2010), 961-981 · Zbl 1224.26030 [18] Schwabik, Š., General integration and extensions II, Czech. Math. J. 60 (2010), 983-1005 · Zbl 1224.26031 [19] Schwabik, Š.; Vrkoč, I., On Kurzweil-Henstock equiintegrable sequences, Math. Bohem. 121 (1996), 189-207 · Zbl 0863.26009 [20] Schwabik, Š.; Ye, G., Topics in Banach Space Integration, Series in Real Analysis 10. World Scientific, Hackensack (2005) · Zbl 1088.28008 [21] Thomson, B. S., Real Functions, Lecture Notes in Mathematics 1170. Springer, Berlin (1985) · Zbl 0581.26001 [22] Ward, A. J., The Perron-Stieltjes integral, Math. Z. 41 (1936), 578-604 · Zbl 0014.39702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.