On numerical errors to the fields surrounding a relativistically moving particle in PIC codes. (English) Zbl 1436.78009

Summary: The particle-in-cell (PIC) method is widely used to model the self-consistent interaction between discrete particles and electromagnetic fields. It has been successfully applied to problems across plasma physics including plasma based acceleration, inertial confinement fusion, magnetically confined fusion, space physics, astrophysics, high energy density plasmas. In many cases the physics involves how relativistic particles (those with high relativistic \(\gamma\) factors) are generated and interact with plasmas. However, when relativistic particles stream across the grid, both in “vacuum” and in plasma, many numerical issues may arise which can lead to unphysical results. We present a detailed analysis of how discretized Maxwell solvers used in PIC codes can lead to numerical errors to the fields that surround particles that move at relativistic speeds across the grid. Expressions for the axial electric field as integrals in \(\boldsymbol{k}\) space are presented that reveal two types of errors. The first arises from errors to the numerator of the integrand and leads to unphysical fields that are antisymmetric about the particle. The second arises from errors to the denominator of the integrand and lead to Cherenkov like radiation in “vacuum”. These fields are not anti-symmetric, extend behind the particle, and cause the particle to accelerate or decelerate depending on the solver and parameters. The unphysical fields are studied in detail for two representative solvers – the Yee solver and the FFT based solver. Although the Cherenkov fields are absent, the space charge fields are still present in the fundamental Brillouin zone for the FFT based solvers. In addition, the Cherenkov fields are present in higher order zones for the FFT based solvers. Comparison between the analytical solutions and PIC simulation results are presented. A solution for eliminating these unphysical fields by modifying the \(\boldsymbol{k}\) operator in the axial direction is also presented. Using a customized finite difference solver, this solution was successfully implemented into OSIRIS [R. A. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342–351 (2002; Zbl 1053.81100)]. Results from the customized solver are also presented. This solution will be useful for a beam of particles that all move in one direction with a small angular divergence.


78M20 Finite difference methods applied to problems in optics and electromagnetic theory
78A35 Motion of charged particles
83A05 Special relativity


Zbl 1053.81100


Full Text: DOI arXiv


[1] Fonseca, R., High performance computing in particle accelerator science and technology-osiris: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators, Lect. Notes Comput. Sci., 2331, 342-351 (2002) · Zbl 1053.81100
[2] Dawson, J. M., Particle simulation of plasmas, Rev. Mod. Phys., 55, 2, 403 (1983)
[3] Hockney, R. W.; Eastwood, J. W., Computer Simulation Using Particles (1988), CRC Press · Zbl 0662.76002
[4] Birdsall, C. K.; Langdon, A. B., Plasma Physics via Computer Simulation (1991), IOP: IOP Bristol
[5] Bykov, A.; Gehrels, N.; Krawczynski, H.; Lemoine, M.; Pelletier, G.; Pohl, M., Particle acceleration in relativistic outflows, Space Sci. Rev., 173, 1-4, 309-339 (2012)
[6] Joshi, C.; Katsouleas, T., Plasma accelerators at the energy frontier and on tabletops, Phys. Today, 56, 6, 47-53 (2003)
[7] Craxton, R.; Anderson, K.; Boehly, T.; Goncharov, V.; Harding, D.; Knauer, J.; McCrory, R.; McKenty, P.; Meyerhofer, D.; Myatt, J., Direct-drive inertial confinement fusion: a review, Phys. Plasmas, 22, 11, Article 110501 pp. (2015)
[8] Betti, R.; Hurricane, O., Inertial-confinement fusion with lasers, Nat. Phys., 12, 5, 435 (2016)
[9] Godfrey, B. B.; Vay, J.-L., Numerical stability of relativistic beam multidimensional pic simulations employing the esirkepov algorithm, J. Comput. Phys., 248, 33-46 (2013) · Zbl 1349.82081
[10] Xu, X.; Yu, P.; Martins, S. F.; Tsung, F. S.; Decyk, V. K.; Vieira, J.; Fonseca, R. A.; Lu, W.; Silva, L. O.; Mori, W. B., Numerical instability due to relativistic plasma drift in em-pic simulations, Comput. Phys. Commun., 184, 11, 2503-2514 (2013) · Zbl 1349.76929
[11] Yu, P.; Xu, X.; Decyk, V. K.; An, W.; Vieira, J.; Tsung, F. S.; Fonseca, R. A.; Lu, W.; Silva, L. O.; Mori, W. B., Modeling of laser wakefield acceleration in Lorentz boosted frame using em-pic code with spectral solver, J. Comput. Phys., 266, 124-138 (2014) · Zbl 1300.78012
[12] Godfrey, B. B.; Vay, J.-L.; Haber, I., Numerical stability analysis of the pseudo-spectral analytical time-domain pic algorithm, J. Comput. Phys., 258, 689-704 (2014) · Zbl 1349.82083
[13] Godfrey, B. B.; Vay, J.-L., Suppressing the numerical Cherenkov instability in fdtd pic codes, J. Comput. Phys., 267, 1-6 (2014) · Zbl 1349.82082
[14] Yu, P.; Xu, X.; Decyk, V. K.; Fiuza, F.; Vieira, J.; Tsung, F. S.; Fonseca, R. A.; Lu, W.; Silva, L. O.; Mori, W. B., Elimination of the numerical Cerenkov instability for spectral em-pic codes, Comput. Phys. Commun., 192, 32-47 (2015)
[15] Godfrey, B. B.; Vay, J.-L., Improved numerical Cherenkov instability suppression in the generalized pstd pic algorithm, Comput. Phys. Commun., 196, 221-225 (2015)
[16] Yu, P.; Xu, X.; Tableman, A.; Decyk, V. K.; Tsung, F. S.; Fiuza, F.; Davidson, A.; Vieira, J.; Fonseca, R. A.; Lu, W., Mitigation of numerical Cerenkov radiation and instability using a hybrid finite difference-fft Maxwell solver and a local charge conserving current deposit, Comput. Phys. Commun., 197, 144-152 (2015) · Zbl 1351.82097
[17] Yu, P.; Xu, X.; Davidson, A.; Tableman, A.; Dalichaouch, T.; Li, F.; Meyers, M. D.; An, W.; Tsung, F. S.; Decyk, V. K., Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3d geometry, J. Comput. Phys., 316, 747-759 (2016) · Zbl 1349.76931
[18] Kirchen, M.; Lehe, R.; Godfrey, B. B.; Dornmair, I.; Jalas, S.; Peters, K.; Vay, J.-L.; Maier, A. R., Stable discrete representation of relativistically drifting plasmas, Phys. Plasmas, 23, 10, Article 100704 pp. (2016)
[19] Lehe, R.; Kirchen, M.; Godfrey, B. B.; Maier, A. R.; Vay, J.-L., Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using galilean coordinates, Phys. Rev. E, 94, 5, Article 053305 pp. (2016)
[20] Li, F.; Yu, P.; Xu, X.; Fiuza, F.; Decyk, V. K.; Dalichaouch, T.; Davidson, A.; Tableman, A.; An, W.; Tsung, F. S.; Fonseca, R. A.; Lu, W.; Mori, W. B., Controlling the numerical Cerenkov instability in pic simulations using a customized finite difference Maxwell solver and a local fft based current correction, Comput. Phys. Commun., 214, 6-17 (2017) · Zbl 1376.78011
[21] Na, D.-Y.; Nicolini, J.; Lee, R.; Borges, B.-H.; Omelchenko, Y.; Teixeira, F., Diagnosing numerical Cherenkov instabilities in relativistic plasma simulations based on general meshes, J. Comput. Phys., 402, Article 108880 pp. (2020)
[22] Haber, I.; Lee, R.; Klein, H.; Boris, J., Advances in electromagnetic simulation techniques, (Proc. Sixth Conf. on Num. Sim. Plasmas. Proc. Sixth Conf. on Num. Sim. Plasmas, Berkeley, CA (1973)), 46-48
[23] Vay, J.-L.; Haber, I.; Godfrey, B. B., A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas, J. Comput. Phys., 243, 260-268 (2013) · Zbl 1349.82126
[24] The readers can refer to Chapter 13.3 and Problem 13.3 of Classical Electrodynamics (third edition) written by J.D. Jackson.
[25] It did a compensated 5 pass binomial smoothing, i.e. apply a \((1, 2, 1)\) stencil 4 times, followed by a \((- 5, 14, - 5)\) stencil.
[26] Wang, S.; Teixeira, F. L., A three-dimensional angle-optimized finite-difference time-domain algorithm, IEEE Trans. Microw. Theory Tech., 51, 3, 811-817 (2003)
[27] Wang, S.; Teixeira, F. L., A finite-difference time-domain algorithm optimized for arbitrary propagation angles, IEEE Trans. Antennas Propag., 51, 9, 2456-2463 (2003)
[28] Greenwood, A. D.; Cartwright, K. L.; Luginsland, J. W.; Baca, E. A., On the elimination of numerical Cerenkov radiation in pic simulations, J. Comput. Phys., 201, 2, 665-684 (2004) · Zbl 1076.82004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.