×

zbMATH — the first resource for mathematics

A consistent method for direct numerical simulation of droplet evaporation. (English) Zbl 1436.76059
Summary: A consistent method for direct numerical simulations of evaporation processes is presented. It is implemented into the CFD code FS3D which solves the incompressible Navier-Stokes equations and is based on a Volume-of-Fluid method. In the new framework convection of the fluid and the gaseous phase is conducted first, whereas the physics of the phase change is captured subsequently in a fully consistent loop.
We present several validation cases and show, that the method is able to simulate evaporation processes for a large range of ambient conditions, ranging from supercooled droplets to extreme environments with high evaporation rates. Comparisons to analytical models from literature and other experimental investigations are in very good agreement. Then, the method is applied for several three-dimensional direct numerical simulations of evaporating droplets. We present simulations of supercooled droplets in an airflow and compare them to experimental data. Furthermore, an oscillating droplet with evaporation is simulated and evaluated regarding the influence of the phase change on the droplet oscillation behavior. The potential of the method is also demonstrated for a free falling droplet in a high pressure and temperature atmosphere. Vapor fields and temperature regimes are evaluated in this case and show very good agreement with experiments.
MSC:
76T10 Liquid-gas two-phase flows, bubbly flows
76M99 Basic methods in fluid mechanics
80A22 Stefan problems, phase changes, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aggarwal, S. K.; Peng, F., A review of droplet dynamics and vaporization modeling for engineering calculations, J. Eng. Gas Turbines Power, 117, 3, 453-461 (1995)
[2] Antoine, C., Tensions des vapeurs: nouvelle relation entre les tensions et les temperatures, Comptes. Rendus., 107, 681-684 (1888) · JFM 20.1204.01
[3] Ban, H.; Son, G., Numerical simulation of droplet evaporation between two circular plates, J. Mech. Sci. Technol., 29, 6, 2401-2407 (2015)
[4] Banerjee, R., Numerical investigation of evaporation of a single ethanol/iso-octane droplet, Fuel, 107, 724-739 (2013)
[5] Birouk, M.; Gökalp, I., Current status of droplet evaporation in turbulent flows, Prog. Energy Combust. Sci., 32, 408-423 (2006)
[6] Bork, B.; Preusche, A.; Weckenmann, F.; Lamanna, G.; Dreizler, A., Measurement of species concentration and estimation of temperature in the wake of evaporating n-heptane droplets at trans-critical conditions, Proc. Combust. Inst., 36, 2, 2433-2440 (2017)
[7] Brackbill, J. U.; Kothe, D. B.; Zemach, C., A continuum method for modeling surface-tension, J. Comput. Phys., 100, 2, 335-354 (1992) · Zbl 0775.76110
[8] Crowe, C.; Schwarzkopf, J.; Sommerfeld, M.; Tsuji, Y., Multiphase Flows with Droplets and Particles (2011), CRC Press: CRC Press Boca Raton
[9] Davidson, M. R.; Rudman, M., Volume-of-fluid calculation of heat or mass transfer across deforming interfaces in two-fluid flow, Numer. Heat Transf., Part B, Fundam., 41, 3-4, 291-308 (2002)
[10] Duret, B.; Reveillon, J.; Menard, T.; Demoulin, F., Improving primary atomization modeling through DNS of two-phase flows, Int. J. Multiph. Flow, 55, 130-137 (2013)
[11] Eisenschmidt, K.; Rauschenberger, P.; Rohde, C.; Weigand, B., Modelling of freezing processes in super-cooled droplets on sub-grid scale, (ILASS - Europe 2013, 25th European Conference on Liquid Atomization and Spray Systems. ILASS - Europe 2013, 25th European Conference on Liquid Atomization and Spray Systems, Chania, Greece (2013))
[12] Enright, D.; Fedkiw, R.; Ferziger, J.; Mitchell, I., A hybrid particle level set method for improved interface capturing, J. Comput. Phys., 183, 1, 83-116 (2002) · Zbl 1021.76044
[13] Ertl, M.; Reutzsch, J.; Nägel, A.; Wittum, G.; Weigand, B., Towards the implementation of a new multigrid solver in the DNS code FS3D for simulations of shear-thinning jet break-up at higher Reynolds numbers, (High Performance Computing in Science and Engineering ’ 17 (2017), Springer International Publishing), 269-287
[14] Faeth, G., Current status of droplet and liquid combustion, Prog. Energy Combust. Sci., 3, 4, 191-224 (1977)
[15] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 2, 457-492 (1999) · Zbl 0957.76052
[16] Forero, L.; Velásquez J., J. A., Wagner liquid-vapour pressure equation constants from a simple methodology, J. Chem. Thermodyn., 43, 1235-1251 (2011)
[17] Gibou, F.; Fedkiw, R., A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem, J. Comput. Phys., 202, 2, 577-601 (2005) · Zbl 1061.65079
[18] Glimm, J.; Grove, J.; Linquist, W.; McBryan, O.; Tryggvason, G., The bifurcation of tracked scalar waves, SIAM J. Sci. Stat. Comput., 9, 1, 61-79 (1987)
[19] Glimm, J.; Grove, J. W.; Li, X.; Zhao, N., Simple front tracking, (Contemporary Mathematics (1999)) · Zbl 0960.76058
[20] Gomaa, H.; Stotz, I.; Sievers, M.; Lamanna, G.; Weigand, B., Preliminary investigation on diesel droplet impact on oil wallfilms in diesel engines, (ILASS - Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems. ILASS - Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, Portugal, September 2011 (2011))
[21] Gross, J.; Sadowski, G., Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res., 40, 4, 1244-1260 (2001)
[22] Gyarmathy, G., The spherical droplet in gaseous carrier streams: review and synthesis, Multiph. Sci. Technol., 1, 1-4, 99-279 (1982)
[23] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 12, 2182-2189 (1965) · Zbl 1180.76043
[24] Harstad, K.; Bellan, J., An all-pressure fluid drop model applied to a binary mixture: heptane in nitrogen, Int. J. Multiph. Flow, 26, 1675-1706 (2000) · Zbl 1137.76608
[25] Hase, M., Numerische berechnung dreidimensionaler transportvorgänge an angeströmten, sich verformenden tropfen (2005), Universität Stuttgart, Ph.D. thesis
[26] Hase, M.; Weigand, B., Numerical simulation of 3D unsteady heat transfer at strongly deformed droplets at high Reynolds-numbers, (High-Performance Computing in Science and Engineering (2003), Springer-Verlag), 255-266 · Zbl 1143.76501
[27] Hase, M.; Weigand, B., A numerical model for 3D transient evaporation processes based on the volume-of-fluid method, (ICHMT International Symposium on Advances in Computational Heat Transfer (2004)), 1-23
[28] Hase, M.; Weigand, B., Transient heat transfer of deforming droplets at high Reynolds numbers, Int. J. Numer. Methods Heat Fluid Flow, 14, 1, 85-97 (2004) · Zbl 1064.76620
[29] Haywood, R. J.; Nafziger, R.; Renksizbulut, M., A detailed examination of gas and liquid phase transient processes in convective droplet evaporation, J. Heat Transf., 111, 495-502 (1989)
[30] Haywood, R. J.; Renksizbulut, M.; Raithby, G. D., Numerical-solution of deforming evaporating droplets at intermediate Reynolds-numbers, Numer. Heat Transf., Part A, Appl., 26, 3, 253-272 (1994) · Zbl 0900.76674
[31] Haywood, R. J.; Renksizbulut, M.; Raithby, G. D., Transient deformation and evaporation of droplets at intermediate Reynolds-numbers, Int. J. Heat Mass Transf., 37, 9, 1401-1409 (1994) · Zbl 0900.76674
[32] Hirt, C. W.; Nichols, B. D., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 1, 201-225 (1981) · Zbl 0462.76020
[33] Hyman, J. M., Numerical methods for tracking interfaces, Phys. D: Nonlinear Phenom., 12, 1-3, 396-407 (1984) · Zbl 0604.65092
[34] Palmore, J. John; Desjardins, O., A volume of fluid framework for interface-resolved simulations of vaporizing liquid-gas flows, J. Comput. Phys., 399, Article 108954 pp. (2019)
[35] Juric, D.; Tryggvason, G., Computations of boiling flows, Int. J. Multiph. Flow, 24, 3, 387-410 (1998) · Zbl 1121.76455
[36] Kays, W.; Crawford, M.; Weigand, B., Convective Heat and Mass Transfer (2004), McGraw-Hill
[37] Kulmala, M.; Vesala, T.; Schwarz, J.; Smolik, J., Mass-transfer from a drop. 2. Theoretical-analysis of temperature-dependent mass flux correlation, Int. J. Heat Mass Transf., 38, 9, 1705-1708 (1995) · Zbl 0925.76699
[38] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys., 113, 1, 134-147 (1994) · Zbl 0809.76064
[39] Lamanna, G.; Steinhausen, C.; Weigand, B.; Preusche, A.; Bork, B.; Dreizler, A.; Stierle, R.; Groß, J., On the importance of non-equilibrium models for describing the coupling of heat and mass transfer at high pressure, Int. Commun. Heat Mass Transf., 98, 49-58 (2018)
[40] Lamb, H., Hydrodynamics (1932), Cambridge University Press · JFM 26.0868.02
[41] Lupo, G.; Duwig, C., A numerical study of ethanol water-droplet evaporation, J. Eng. Gas Turbines Power, 140, 2, Article 021401 pp. (2017)
[42] Ma, C.; Bothe, D., Numerical modeling of thermocapillary two-phase flows with evaporation using a two-scalar approach for heat transfer, J. Comput. Phys., 233, 552-573 (2013)
[43] Mezhericher, M.; Levy, A.; Borde, I., Spray drying modelling based on advanced droplet drying kinetics, Chem. Eng. Process., 48, 11, 1205-1213 (2010)
[44] Mills, A. F., Mass Transfer (2001), Prentice Hall
[45] Nguyen, D. Q.; Fedkiw, R. P.; Kang, M., A boundary condition capturing method for incompressible flame discontinuities, J. Comput. Phys., 172, 71-98 (2001) · Zbl 1065.76575
[46] Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P., The Properties of Gases and Liquids (2000), McGraw-Hill
[47] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 16, 5838-5866 (2009) · Zbl 1280.76020
[48] Popinet, S.; Zaleski, S., A front-tracking algorithm for accurate representation of surface tension, Int. J. Numer. Methods Fluids, 30, 6, 775-793 (1999) · Zbl 0940.76047
[49] Pruppacher, H. R.; Klett, J. D., Microphysics of Clouds and Precipitation (1997), Kluwer Academic Publishers
[50] Ranz, W. E.; Marshall, W. R., Evaporation from drops: part 2, Chem. Eng. Prog., 48, 4, 173-180 (1952)
[51] Rauschenberger, P.; Eisenschmidt, K.; Weigand, B., Volume of fluid based direct numerical simulation of ice growth, (83rd Annual Meeting of the International Association of Applied Mathematics and Mechanics (2012))
[52] Rauschenberger, P.; Weigand, B., A volume-of-fluid method with interface reconstruction for ice growth in supercooled water, J. Comput. Phys., 282, 98-112 (2015) · Zbl 1351.80019
[53] Reitzle, M.; Kieffer-Roth, C.; Garcke, H.; Weigand, B., A volume-of-fluid method for three-dimensional hexagonal solidification processes, J. Comput. Phys., 339, 356-369 (2017)
[54] Reitzle, M.; Ruberto, S.; Stierle, R.; Gross, J.; Janzen, T.; Weigand, B., Direct numerical simulation of sublimating ice particles, Int. J. Therm. Sci., 145 (2019)
[55] Renksizbulut, M.; Bussmann, M., Multicomponent droplet evaporation at intermediate Reynolds-numbers, Int. J. Heat Mass Transf., 36, 11, 2827-2835 (1993)
[56] Renksizbulut, M.; Haywood, R. J., Transient droplet evaporation with variable properties and internal circulation at intermediate Reynolds-numbers, Int. J. Multiph. Flow, 14, 2, 189-202 (1988) · Zbl 0666.76131
[57] Renksizbulut, M.; Yuen, M. C., Numerical study of droplet evaporation in a high-temperature stream, J. Heat Transf., 105, 2, 389-397 (1983)
[58] Reutzsch, J.; Ertl, M.; Baggio, M.; Seck, A.; Weigand, B., Towards a direct numerical simulation of primary jet breakup with evaporation, ((2019), Springer International Publishing), 243-257, chap. 15
[59] Reutzsch, J.; Kochanattu, G. V.R.; Ibach, M.; Kieffer-Roth, C.; Tonini, S.; Cossali, G.; Weigand, B., Direct numerical simulations of oscillating liquid droplets: a method to extract shape characteristics, (Proceedings ILASS-Europe 2019. 29th Conference on Liquid Atomization and Spray Systems (2019))
[60] Rider, W. J.; Kothe, D. B., Reconstructing volume tracking, J. Comput. Phys., 141, 2, 112-152 (1998) · Zbl 0933.76069
[61] Rieber, M., Numerical modelling of the dynamic of boundary layers in two phase flows (2004), Universität Stuttgart, (English translation), Dissertation
[62] Rieber, M.; Graf, F.; Hase, M.; Roth, N.; Weigand, B., Numerical simulation of moving spherical and strongly deformed droplets, (Proceedings ILASS-Europe (2000)), 1-6
[63] Roache, P., Verification and Validation in Computational Science and Engineering (1998), Hermosa Publishers
[64] Roth, J.; Schlottke, N.; Urban, J.; Weigand, B., Simulations of droplet impact on cold wall without wetting, (ILASS (2008)), 1-7
[65] Ruberto, S.; Reutzsch, J.; Roth, N.; Weigand, B., A systematic experimental study on the evaporation rate of supercooled water droplets at subzero temperatures and varying relative humidity, Exp. Fluids, 58, 5, 55 (2017)
[66] Ruberto, S.; Reutzsch, J.; Weigand, B., Experimental investigation of the evaporation rate of supercooled water droplets at constant temperature and varying relative humidity, Int. Commun. Heat Mass Transf., 77, 190-194 (2016)
[67] Sazhin, S. S., Advanced models of fuel droplet heating and evaporation, Prog. Energy Combust. Sci., 32, 2, 162-214 (2006)
[68] Schlottke, J., Direct numerical simulation of multiphase flows with phase change (2010), Universität Stuttgart, (English translation), Ph.D. thesis
[69] Schlottke, J.; Dülger, E.; Weigand, B., A VOF-based 3D numerical investigation of evaporating, deformed droplets, Prog. Comput. Fluid Dyn., 9, 6/7, 426-435 (2009)
[70] Schlottke, J.; Rauschenberger, P.; Weigand, B.; Ma, C.; Bothe, D., Volume of fluid direct numerical simulation of heat and mass transfer using sharp temperature and concentration fields, (ILASS - Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems. ILASS - Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, Portugal (2011))
[71] Schlottke, J.; Weigand, B., Direct numerical simulation of evaporating droplets, J. Comput. Phys., 227, 10, 5215-5237 (2008) · Zbl 1388.76104
[72] Schwarz, J.; Smolik, J., Mass-transfer from a drop 1. Experimental-study and comparison with existing correlations, Int. J. Heat Mass Transf., 37, 14, 2139-2143 (1994)
[73] Shyy, W.; Smith, R. W.; Udaykumar, H. S.; Rao, M. M., Computational Fluid Dynamics with Moving Boundaries (1995), CRC Press: CRC Press Bristol, PA, USA
[74] Sirignano, W. A., Fuel droplet vaporization and spray combustion theory, Prog. Energy Combust. Sci., 9, 4, 291-322 (1983)
[75] Son, G., A level-set method for analysis of microdroplet evaporation on a heated surface, J. Mech. Sci. Technol., 24, 4, 991-997 (2010)
[76] Son, G., Numerical analysis of microdroplet impact and evaporation on a solid surface, J. Heat Transf., 134 (2011)
[77] Son, G.; Dhir, V. K., Numerical simulation of film boiling near critical pressures with a level set method, J. Heat Transf., 120, 1, 183-192 (1998)
[78] Son, G.; Dhir, V. K., A level set method for analysis of film boiling on an immersed solid surface, Numer. Heat Transf., Part B, Fundam., 52, 2, 153-177 (2007)
[79] Son, G.; Dhir, V. K.; Ramanujapu, N., Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface, J. Heat Transf., 121, 3, 623-631 (1999)
[80] Son, G.; Ramanujapu, N.; Dhir, V. K., Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling, J. Heat Transf., 124, 1, 51-62 (2001)
[81] Steinhausen, C.; Reutzsch, J.; Lamanna, G.; Weigand, B.; Stierle, R.; Gross, J.; Preusche, A.; Dreizler, A., Droplet evaporation under high pressure and temperature conditions: a comparison of experimental estimations and direct numerical simulations, (Proceedings ILASS-Europe 2019. 29th Conference on Liquid Atomization and Spray Systems (2019))
[82] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 3, 506-517 (1968) · Zbl 0184.38503
[83] Sussman, M.; Puckett, E. G., A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162, 2, 301-337 (2000) · Zbl 0977.76071
[84] Tanguy, S.; Menard, T.; Berlemont, A., A level set method for vaporizing two-phase flows, J. Comput. Phys., 221, 2, 837-853 (2007) · Zbl 1216.76054
[85] Tonini, S.; Cossali, G., An exact solution of the mass transport equations for spheroidal evaporating drops, Int. J. Heat Mass Transf., 60, 236-240 (2013)
[86] Tonini, S.; Cossali, G., An evaporation model for oscillating spheroidal drops, Int. Commun. Heat Mass Transf., 51, 18-24 (2014)
[87] Tonini, S.; Cossali, G., One-dimensional analytical approach to modelling evaporation and heating of deformed drops, Int. J. Heat Mass Transf., 97, 301-307 (2016)
[88] Tornberg, A.-K., Interface tracking methods with application to multiphase flows (01 2000), Tekniska Högskolan, Kungl, Ph.D. thesis
[89] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y. J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 2, 708-759 (2001) · Zbl 1047.76574
[90] Tryggvason, G.; Lu, J., Direct numerical simulations of flows with phase change, IUTAM Symposium on Multiphase Flows with Phase Change: Challenges and Opportunities. IUTAM Symposium on Multiphase Flows with Phase Change: Challenges and Opportunities, Proc. IUTAM, 15, 2-13 (2015)
[91] Unverdi, S. O.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 1, 25-37 (1992) · Zbl 0758.76047
[92] van Leer, B., Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys., 32, 1, 101-136 (1979) · Zbl 1364.65223
[93] Vogel, A.; Reiter, S.; Rupp, M.; Nägel, A.; Wittum, G., UG4: a novel flexible software system for simulating PDE based models on high performance computers, Comput. Vis. Sci., 16, 4, 165-179 (2013) · Zbl 1375.35003
[94] Wagner, W., New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations, Cryogenics, 13, 8, 470-482 (1973)
[95] Welch, S. W.J.; Wilson, J., A volume of fluid based method for fluid flows with phase change, J. Comput. Phys., 160, 2, 662-682 (2000) · Zbl 0962.76068
[96] Xiang, H. W.; Tan, L. C., A new vapor-pressure equation, Int. J. Thermophys., 15, 4, 711-727 (1994)
[97] Yang, J.-R.; Wong, S.-C., On the discrepancies between theoretical and experimental results for microgravity droplet evaporation, Int. J. Heat Mass Transf., 44, 23, 4433-4443 (2001) · Zbl 0986.76508
[98] Young, J., The condensation and evaporation of liquid droplets at arbitrary Knudsen number in the presence of an inert gas, Int. J. Heat Mass Transf., 36, 11, 2941-2956 (1993) · Zbl 0780.76077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.