×

Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: A survey of recent results. (English) Zbl 0722.11054

The title gives a good summary of the paper. The emphasis is on analytic methods, with or without generalized Riemann hypotheses. Seven unsolved problems are given, with discussions of the difficulties involved. There are tables of minimal discriminants, with comparisons with estimates, and an extensive bibliography.
Reviewer: H.J.Godwin (Egham)

MSC:

11R29 Class numbers, class groups, discriminants
11R42 Zeta functions and \(L\)-functions of number fields
11-02 Research exposition (monographs, survey articles) pertaining to number theory
11Y40 Algebraic number theory computations
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers, PWN-Polish Scientific PublishersWarsaw (1974). MR 50# 268. (Very complete references for work before 1973.) · Zbl 0276.12002
[2] Washington, L.C., Introduction to Cyclotomic Fields, Springer. 1982. MR 85g: 11001. · Zbl 0484.12001
[3] Martinet, J., Méthodes géométriques dans la recherche des petits discriminants. pp. 147-179, Séminaire Théorie des Nombres, Paris, 1983-84, C. Goldstein éd., BirkhäuserBoston, 1985. MR 88h:11083. · Zbl 0567.12009
[4] Stark, H.M., Some effective cases of the Brauer-Siegel theorem, Invent. math.23 (1974), 135-152. MR 49 # 7218. · Zbl 0278.12005
[5] Stark, H.M., The analytic theory of algebraic numbers, Bull. Am. Math. Soc.81 (1975), 961-972. MR 56 # 2961. · Zbl 0329.12010
[6] Odlyzko, A.M., Some analytic estimates of class numbers and discriminants, Invent. math.29 (1975), 275-286. MR 51 # 12788. · Zbl 0306.12005
[7] Odlyzko, A.M., Lower bounds. for discriminants of number fields, Acta Arith.29 (1976), 275-297. MR 53 # 5531. · Zbl 0286.12006
[8] Odplyzko, A.M., Lower bounds for discriminants of number fields. II. MR 56 # 309. · Zbl 0362.12005
[9] Odlyzko, A.M., On conductors and discriminants. pp. 377-407, Algebraic Number Fields, (Proc. 1975 Durham Symp.), A. Fröhlich, ed., Academic Press1977. MR 56 #11961. · Zbl 0362.12006
[10] Serre, J.-P., Minorations de discriminants. note of October 1975, published on pp. 240-243 in vol. 3 of Serre, Jean-Pierre, Collected Papers, Springer1986.
[11] Odlyzko, A.M., Discriminant bounds. tables dated Nov. 29, 1976 (unpublished). Some of these bounds are included in Ref. B12.
[12] Poitou, G., Minorations de discriminants (d’après A.M. Odlyzko), Séminaire Bourbaki. Vol. 1975/76 28ème année, Exp. No. 479, pp. 136-153, #567, Springer1977. MR 55 #7995. · Zbl 0359.12010
[13] Poitou, G., Sur les petits discriminants, Séminaire Delange-Pisot-Poitou. 18e année: (1976/77), Théorie des nombres, Fasc. 1, Exp. No. 6, 18pp., Secrétariat Math., Paris, 1977. MR 81i:12007. · Zbl 0393.12010
[14] Diaz, F.Diaz, Y., Tables minorant la racine n-ième du discriminant d’un corps de degré n. Publications Mathématiques d’Orsay 80.06. Université de Paris-Sud, Département de Mathématique, Orsay, (1980). 59 pp. MR 82i:12007. (Some of these bounds are included in Ref. B12.) · Zbl 0482.12003
[15] Martinet, J., Petits discriminants des corps de nombres. pp. 151-193, Journées Arithmétiques1980, J.V. Armitage, ed., Cambridge Univ. Press1982. MR 84g:12009. · Zbl 0491.12005
[16] Lenstra, H.W., Euclidean number fields of large degree, Invent. math.38 (1977), 237-254. MR 55 # 2836. · Zbl 0328.12007
[17] Martinet, J., Tours de corps de classes et estimations de discriminants, Invent. math.44 (1978), 65-73.. MR 57 # 275. · Zbl 0369.12007
[18] Martinet, J., Petits discriminants, Ann. Inst. Fourier (Grenoble) 29, no 1 (1979), 159-170. MR 81h:12006. · Zbl 0387.12006
[19] Schoof, R., Infinite class field towers of quadratic fields, J. reine angew. Math.372 (1986), 209-220. MR 88a:11121. · Zbl 0589.12011
[20] Masley, J.M., Odlyzko bounds and class number problems. pp. 465-474, Algebraic Number Fields (Proc. Durham Symp., 1975), A. Fröhlich, ed., Academic Press1977. MR 56 # 5493. · Zbl 0365.12007
[21] Masley, J.M., Class numbers of real cyclic number fields with small conductor, Compositio Math.37 (1978), 297-319. MR 80e:12005. · Zbl 0428.12003
[22] Masley, J.M., Where are number fields with small class numbers ?. pp. 221-242, Number Theory, Carbondale1979, , Springer, 1979. MR 81f:12004. · Zbl 0421.12005
[23] Hoffstein, J., Some analytic bounds for zeta functions and class numbers, Invent. math.55 (1979), 37-47. MR 80k:12019. · Zbl 0474.12009
[24] Masley, J.M., Class groups of abelian number fields. pp. 475-497, Proc. Queen’s Number Theory Conf. 1979, P. Ribenboim ed., Queen’s Papers in Pure and Applied Mathematics no. 54, Queen’s Univ., 1980, MR 83f:12007. · Zbl 0471.12007
[25] Martinet, J., Sur la constante de Lenstra des corps de nombres, Sém. Theorie des Nombres de Bordeaux (1979-1980). Exp. #17, 21 pp., Univ. Bordeaux1980. MR 83b:12007. · Zbl 0457.12003
[26] van der LINDEN, F.J., Class number computations of real abelian number fields, Math. Comp.39 (1982), 693-707. MR 84e:12005. · Zbl 0505.12010
[27] Leutbecher, A. and Martinet, J., Lenstra’s constant and Euclidean number fields, Astérisque94 (1982), 87-131. MR 85b:11090. · Zbl 0499.12013
[28] Leutbecher, A., Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier (Grenoble) 35. no.2 (1985), 83-106. MR 86j:11107. · Zbl 0546.12005
[29] Hoffstein, J. and Jochnowitz, N., On Artin’s conjecture and the class number of certain CM fields, Duke Math. J.59 (1989), 553-563. · Zbl 0711.11042
[30] Hoffstein, J. and Jochnowitz, N., On Artin’s conjecture and the class number of certain CM fields-II, Duke Math. J.59 (1989), 565-584. · Zbl 0711.11042
[31] Pohst, M., Regulatorabschätzungen für total reelle algebraische Zahlkörper, J. Number Theory9 (1977), 459-492. MR 57 # 268. · Zbl 0366.12011
[32] Gras, G. and Gras, M.-N., Calcul du nombre de classes et des unités des extensions abéliennes réelles de Q, Bull. Sci. Math.101 (2) (1977), 97-129. MR 58 # 586. · Zbl 0359.12007
[33] Pohst, M., Eine Regulatorabschätzung, Abh. Math. Sem. Univ. Hamburg47 (1978), 95-106. MR 58 # 16596. · Zbl 0381.12006
[34] Zimmert, R., Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. math.62 (1981), 367-380. MR 83g:12008. · Zbl 0456.12003
[35] Poitou, G., Le théorème des classes jumelles de R. Zimmert, Sém. de Théorie des Nombres de Bordeaux (1983-1984). Exp. # 5, 4 pp., Univ. Bordeaux1984, (Listed in MR 86b:11003.) · Zbl 0543.12006
[36] Oesterlé, J., Le théorème des classes jumelles de Zimmert et les formules explicites de Weil. pp. 181-197, Sém. Théorie des Nombres, Paris1983-84, C. Goldstein ed., BirkhäuserBoston, 1985. · Zbl 0569.12004
[37] Silverman, J., An inequality connecting the regulator and the discriminant of a number field, J. Number Theory19 (1984), 437-442. MR 86c:11094. · Zbl 0552.12003
[38] Cusick, T.W., Lower bounds for regulators. pp. 63-73 in Number Theory, Noordwijkerhout1983, H. Jager ed., , Springer1984. MR 85k:11052. · Zbl 0549.12003
[39] Bergé, A.-M. and Martinet, J., Sur les minorations géométriques des régulateurs. pp. 23-50, Séminaire Théorie des Nombres, Paris1987- 88, C. Goldstein ed., BirkhäuserBoston, 1990. · Zbl 0699.12014
[40] Friedman, E., Analytic formulas for regulators of number fields, Invent. math.98 (1989), 599-622. · Zbl 0694.12006
[41] Pohst, M. and Zassenhaus, H., Algorithmic Algebraic Number Theory, Cambridge Univ. Press. (1989). · Zbl 0685.12001
[42] Schoof, R. and Washington, L.C., Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp.50 (1988), 543-556. · Zbl 0649.12007
[43] Bergé, A.-M. and Martinet, J., Notions relatives de régulateurs et de hauteurs, Acta Arith.54 (1989), 155-170. · Zbl 0642.12011
[44] Bergé, A.-M. and Martinet, J., Minorations de hauteurs et petits régulateurs relatifs, Sém. Théorie des Nombres Bordeaux (1987-88). Exp.#11, Univ. Bordeaux1988. · Zbl 0699.12013
[45] Costa, A. and Friedman, E., Ratios of regulators in totally real extensions of number fields. to be published. · Zbl 0718.11060
[46] Friedman, E. and Skoruppa, N.-P., Explicit formulas for regulators and ratios of regulators of number fields. manuscript in preparation.
[47] Cusick, T.W., The: egulator spectrum of totally real cubic fields. to appear. · Zbl 0736.11063
[48] Cartier, P. and Roy, Y., On the enumeration of quintic fields with small discriminants, J. reine angew. Math268/269 (1974), 213-215. MR 50 # 2119. · Zbl 0285.12001
[49] Pohst, M., Berechnung kleiner Diskriminanten total reeller algebraischer Zahlkörper, J. reine angew. Math.278/279 (1975), 278-300. MR 52 # 8085. · Zbl 0314.12014
[50] Pohst, M., The minimum discriminant of seventh degree totally real algebraic number fields. pp. 235-240, Number theory and algebra, H. Zassenhaus ed., Academic Press1977. MR 57 # 5952. · Zbl 0373.12006
[51] Liang, J. and Zassenhaus, H., The minimum discriminant of sixth degree totally complex algebraic number field, J. Number Theory9 (1977), 16-35. MR 55 # 305. · Zbl 0345.12005
[52] Pohst, M., On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields, J. Number Theory14 (1982), 99-117. MR 83g:12009. · Zbl 0478.12005
[53] Pohst, M., Weiler, P., and Zassenhaus, H., On effective computation of fundamental units, Math. Comp.38 (1982), 293-329. MR 83e:12005b. · Zbl 0493.12005
[54] Rish, D.G., On algebraic number fields of degree five, Vestnik Moskov. Univ. Ser. I Mat. Mekh. no 2, (1982), 76-80. English translation in Moscow Univ. Math. Bull.37 (1982), no. 99-103. MR 83g:12006. · Zbl 0512.12009
[55] Diaz, F.Diaz, Y., Valeurs minima du discriminant des corps de degré 7 ayant une seule place réelle, C.R. Acad. Sc. Paris296 (1983), 137-139. MR 84i:12004. · Zbl 0527.12007
[56] Diaz, F.Diaz, Y., Valeurs minima du discriminant pour certains types de corps de degré 7, Ann. Inst. Fourier (Grenoble) 34, no 3 (1984), 29-38. MR 86d:11091. · Zbl 0546.12004
[57] Takeuchi, K., Totally real algebraic number fields of degree 5 and 6 with small discriminant, Saitama Math. J.2 (1984), 21-32. MR 86i:11060. · Zbl 0581.12002
[58] Godwin, H.J., On quartic fields of signature one with small discriminant. II, Math. Comp.42 (1984). 707-711. Corrigendum, Math. Comp.43 (1984), 621. MR 85i:11092a, 11092b. · Zbl 0535.12003
[59] Diaz, F.Diaz, Y., Petits discriminants des corps de nombres totalement imaginaires de degré 8, J. Number Theory25 (1987), 34-52. · Zbl 0606.12005
[60] Kwon, S.-H. and Martinet, J., Sur les corps résolubles de degré premier, J. reine angew. Math.375/376 (1987), 12-23. MR 88g:11080. · Zbl 0601.12013
[61] Diaz, F.Diaz, Y., Discriminants minima et petits discriminants des corps de nombres de degré 7 avec cinq places réelles, J. London Math. Soc.38 (2) (1988), 33-46.. · Zbl 0653.12003
[62] Buchmann, J. and Ford, D., On the computation of totally real quartic fields of small discriminant, Math. Comp.52 (1989), 161-174. · Zbl 0668.12001
[63] Kwon, S.-H., Sur les discriminants minimaux des corps quaternioniens. preprint 1987. · Zbl 0854.11057
[64] Llorente, P. and Quer, J., On totally real cubic fields with discriminant D < 107, Math. Comp.50 (1988), 581-594. · Zbl 0651.12001
[65] Buchmann, J., Pohst, M. and Schmettow, J. v., On the computation of unit groups and class groups of totally real quartic fields, Math. Comp.53 (1989), 387-397. · Zbl 0714.11002
[66] Bergé, A.-M., Martinet, J. and Olivier, M., The computation of sextic fields with a quadratic subfield. in Math. Comp. to appear. · Zbl 0709.11056
[67] Diaz, F.Diaz, Y., Table de corps quintiques totalement réels. Université de Paris-Sud, Département de Mathématiques, Orsay, Report no. 89-14, 35 pp., 1989.
[68] Pohst, M., Martinet, J. and Diaz, F.Diaz, Y., The minimum discriminant of totally real octic fields, J. Number Theory. to appear. · Zbl 0719.11079
[69] Hoffstein, J., Some results related to minimal discriminants. pp. 185-194, Number Theory, Carbondale1979, , Springer1979, MR 81d:12005. · Zbl 0418.12002
[70] Neugebauer, A., On zeros of zeta functions in low rectangles in the critical strip. (in Polish), Ph.D. Thesis, A. Mickiewicz University, Poznan, Poland, 1985.
[71] Neugebauer, A., On the zeros of the Dedekind zeta-function near the real axis, Funct. Approx. Comment. Math.16 (1988), 165-167. · Zbl 0677.12005
[72] Neugebauer, A., Every Dedekind zeta-function has a zero in the rectangle 1/2 ≤ σ ≤ 1, 0 < t < 60,, Discuss. Math.. to appear. · Zbl 0592.12010
[73] Odlyzko, A.M., Low zeros of Dedekind zeta function. manuscript in preparation.
[74] Mestre, J.-F., Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math.58 (1986), 209-232. MR 87j:11059. · Zbl 0607.14012
[75] Friedman, E., The zero near 1 of an ideal class zeta function, J. London Math. Soc.35 (2) (1987). 1-17. MR 88g:11087. · Zbl 0583.12010
[76] Friedman, E., Hecke’s integral formula, Sém. Théorie des Nombres de Bordeaux (1987-88). Exp. #5, 23 pp., Univ. Bordeaux1988. · Zbl 0697.12010
[77] Landau, E., Zur Theorie der Heckeschen Zetafunktionen, welche komplexen Charakteren entsprechen, Math. Zeit.4 (1919), 152-162.. Reprinted on pp. 176-186 of vol. 7, Landau, Edmund: Collected Works, P.T. Bateman, et al., eds., Thales Verlag. · JFM 47.0164.01
[78] Landau, E., Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, 2nd ed., Göttingen (1927). Reprinted by Chelsea, 1949. · Zbl 0041.01103
[79] Remak, R., Über die Abschätzung des absoluten Betrages des Regulators eines algebraischen Zahlkörpers nach unten, J. reine angew. Math.167. (1932), 360-378. · JFM 58.0173.04
[80] Boas, R.P. and Kac, M., Inequalities for Fourier transforms of positive functions, Duke Math. J.12 (1945), 189-206. MR 6-265. · Zbl 0060.25602
[81] Guinand, A.P., A summation formula in the theory of prime numbers, Proc. London Math. Soc.50 (2) (1948), 107-119. MR 10, 104g. · Zbl 0031.11003
[82] Guinand, A.P., Fourier reciprocities and the Riemann zeta- function, Proc. London Math. Soc.51 (2) (1949), 401-414. MR 11, 162d. · Zbl 0039.11503
[83] Weil, A., Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sem. Math. Univ. Lund, tome supplémentaire (1952), 252-265. MR 14, 727e. · Zbl 0049.03205
[84] Remak, R., Über Grössenbeziehungen zwischen Diskriminante und Regulator eines algebraischen Zahlkörpers, Compos. Math.10 (1952), 245-285. MR 14, 952d. · Zbl 0047.27202
[85] Remak, R., Über algebraische Zahlkörper mit schwachem Einheitsdefekt, Compos. Math.12 (1954), 35-80. MR 16, 116a. · Zbl 0055.26805
[86] Weil, A., Sur les formules explicites de la théorie des nombres, Izv. Akad. Nauk SSSR Ser. Mat.36 (1972). 3-18. MR 52 # 345. Reprinted in Weil, A., Oeuvres Scientifiques, vol. 3, pp. 249-264, Springer1979. · Zbl 0245.12010
[87] Besenfelder, H.-J., Die Weilsche “Explizite Formel” und temperierte Distributionen, J. reine angew. Math.293/294 (1977), 228-257. MR 57 # 254. · Zbl 0354.12007
[88] Serre, J.-P. note on p. 710 in vol. 3 of Serre, Jean-Pierre, Collected Papers, Springer1986.
[89] Cohen, H. and Lenstra, H.W., Heuristics on class groups of number fields. pp. 33-62 in Number Theory, Noordwijkerhout1983, H. Jager ed., , Springer1984. MR 85j:11144. · Zbl 0558.12002
[90] Serre, J.-P., Sur le nombre des points rationnels d’une courbe algébrique sur un corps fini, C.R. Acad. Sci. Paris296 (1983). sér. I, 397-402. MR 85b:14027. Reprinted on pp. 658-663 in vol. 3 of Serre, Jean-Pierre, Collected Papers, Springer1986. · Zbl 0538.14015
[91] Odlyzko, A.M. and te Riele, H.J.J., Disproof of the Mertens conjecture, J. reine angew. Math.357 (1985), 138-160. MR 86m:11070. · Zbl 0544.10047
[92] Fontaine, J.-M., Il n’y a pas de variété abélienne sur Z, Invent. math.81 (1985), 515-538. MR 87g:11073. · Zbl 0612.14043
[93] Cohen, H. and Martinet, J., Etude heuristique des groupes de classes des corps de nombres, J. reine angew. Math.404 (1990), 39-76. · Zbl 0699.12016
[94] Borel, A. and Prasad, G., Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Publ: Math. I.H.E.S.69 (1989), 119-171. · Zbl 0707.11032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.