×

zbMATH — the first resource for mathematics

The class \({\mathcal C}\) is not stable by small deformations. (English) Zbl 0722.32014
We show that some Lebrun-Moishezon twistor spaces have arbitrarily small deformations which are not in Fujiki’s class \({\mathcal C}\) (i.e. bimeromorphic to compact Kähler manifolds).
Reviewer: F.Campana

MSC:
32J27 Compact Kähler manifolds: generalizations, classification
32J99 Compact analytic spaces
32L25 Twistor theory, double fibrations (complex-analytic aspects)
53C55 Global differential geometry of Hermitian and Kählerian manifolds
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Altiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four dimensional Riemannian geometry. Proc. R. Soc. Lond. A362, 452-461 (1978) · Zbl 0389.53011
[2] Besse, A.: Einstein manifolds. (Erg. Math., 3. Folge, Bd. 10) Berlin Heidelberg New York: Springer 1987
[3] Campana, F.: Compacit? et alg?bricit? dans l’espace des cycles. Math. Ann.251, 7-18 (1980) · Zbl 0445.32021
[4] Campane, F.: On twistor spaces in the class? J. Diff. Geom. (in press)
[5] Campana, F.: R?duction alg?brique d’un morphisme K?hl?rien propre et applications. Math. Ann.256, 157-189 (1981) · Zbl 0461.32010
[6] Donaldson, S.K., Friedman, R.: Connected sums of self-dual manifolds and deformations of singular spaces. Nonlinearity2, 197-239 (1989) · Zbl 0671.53029
[7] Friedman, R.: Simultaneous resolutions of bluefold double points. Math. Ann.274, 671-699 (1986) · Zbl 0576.14013
[8] Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulr?ume komplexer Strukturen. Publ. Math. Hautes Etud. Sci.5, 1-64 (1960) · Zbl 0158.32901
[9] Hitchin, N.: K?hlerian twistor spaces. Proc. Lond. Math. Soc.43, 133-150 (1981) · Zbl 0474.14024
[10] Hitchin, N.: Linear field equations on self-dual spaces. Proc. R. Soc. Lond., Ser. A370, 173-191 (1988) · Zbl 0436.53058
[11] Horikawa, E.: On deformations of holomorphic maps. III. Math. Ann.222, 275-282 (1976) · Zbl 0334.32021
[12] Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal problem. Algebraic geometry. Sendai 1985. Adv. Stud. Pure Math.10, 283-360 (1987)
[13] Spencer, K.K.: On deformations of complex analytic structures. III. Ann. Math.71, 43-76 (1960) · Zbl 0128.16902
[14] Kurke, H.: Twistor spaces onn-CP 2. Preprint Erlangen
[15] Lebrun, C.: Explicit self-dual metrics on (#n CP 2). Preprint Princeton
[16] Poon, S.: Algebraic dimension of twistor spaces. Math. Ann.282, 621-627 (1988) · Zbl 0665.32014
[17] Poon, S.: On twistor spaces admitting effective divisors of degree one (in preparation)
[18] Ville, M.: Sur la dimension alg?brique des espaces des twisteurs des vari?t?s selfduales. Preprint
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.