Fusco, Nicola; Sbordone, Carlo Local boundedness of minimizers in a limit case. (English) Zbl 0722.49012 Manuscr. Math. 69, No. 1, 19-25 (1990). Summary: We prove the local boundedness of minimizers of a functional with anisotropic polynomial growth. The result here obtained is optimal if compared with previously known counterexamples [see M. Giaquinta, Manuscr. Math. 59, 245-248 (1987; Zbl 0638.49005); P. Marcellini, J. Differ. Equations 90, No.1, 1-30 (1991); “Un example de solution discontinue d’un problème variationnel dans le cas scalaire”, preprint, Firenze: Univ. degli Studii, Ist. Mat. “Ulisse Dini”, No.11 (1987); M. Hong, “Some remarks on the minimizers of variational integrals with non-standard growth conditions”, preprint]. Cited in 47 Documents MSC: 49J40 Variational inequalities 49J45 Methods involving semicontinuity and convergence; relaxation Keywords:local boundedness; anisotropic polynomial growth Citations:Zbl 0638.49005 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] L. BOCCARDO–P. MARCELLINI–C. SBORDONE, ”L Regularity for Variational Problems with Sharp Non Standard Growth Conditions”; Boll. U.M.I. (7), 4-A (1990) · Zbl 0711.49058 [2] M. GIAQUINTA, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems; Annals of Math. Studies 105, Princeton University Press, Princeton (1983) · Zbl 0516.49003 [3] M. GIAQUINTA, ”Growth conditions and regularity, a counterexample”; Manuscripta Math. 59 (1987), 245–248 · Zbl 0638.49005 · doi:10.1007/BF01158049 [4] M. GIAQUINTA–E. GIUSTI, ”On the regularity of the minima of variational integrals”; Acta Math. 148 (1982), 31–46 · Zbl 0494.49031 · doi:10.1007/BF02392725 [5] HONG MIN-CHUN, ”Some remark on the minimizers of variational integrals with non standard growth conditions”; preprint [6] O.A. LADYZHENSKAYA–N.N.URAL’ TSEVA, ”Linear and Quasilinear Elliptic Equations”, Acad. Press (1968) [7] P. MARCELLINI, ”Un example de solution discontinue d’un probléme variationnel dans le cas scalaire”; Preprint Ist. Mat. ”U. Dini” n.11 1987 [8] P. MARCELLINI, ”Regularity and existence of solutions of elliptic equations with p,q-growth conditions”; J. Diff. Equations (to appear) · Zbl 0724.35043 [9] G. MOSCARIELLO–L. NANIA, ”Hölder continuity of minimizers of functionals with non standard growth conditions”; Preprint Dip. Mat. e Appl. ”R. Caccioppoli” n. 30, (1989) [10] C. SBORDONE, ”On some integral inequalities and their applications to the Calculus of Variations”; Boll. U.M.I. An. Funz. e Appl. serieVI, volV, 1, (1986) 73–94 · Zbl 0678.49008 [11] M. TROISI, ”Teoremi di inclusione per spazi di Sobolev non isotropi” Ricerche Mat. 18 (1969), 3–24. · Zbl 0182.16802 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.