×

zbMATH — the first resource for mathematics

An example of a generalized Brownian motion. (English) Zbl 0722.60033
Summary: We present an example of a generalized Brownian motion. It is given by creation and annihilation operators on a “twisted” Fock space of \(L^ 2({\mathbb{R}})\). These operators fulfill (for a fixed -1\(\leq \mu \leq 1)\) the relations \(c(f)c^*(g)-\mu c^*(g)c(f)=<f,g>1\) \((f,g\in L^ 2({\mathbb{R}}))\). We show that the distribution of these operators with respect to the vacuum expectation is a generalized Gaussian distribution, in the sense that all moments can be calculated from the second moments with the help of a combinatorial formula. We also indicate that our Brownian motion is one component of an n-dimensional Brownian motion which is invariant under the quantum group \(S_{\nu}U(n)\) of Woronowicz (with \(\mu =\nu^ 2)\).

MSC:
60G20 Generalized stochastic processes
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
60J65 Brownian motion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] [ApH] Applebaum, D.B., Hudson, R.L.: Fermion Ito’s formula and stochastic evolutions. Commun. Math. Phys.96, 473–496 (1984) · Zbl 0572.60052 · doi:10.1007/BF01212531
[2] [Avi] Avitzour, D.: Free products ofC *-algebras. Trans. Am. Math. Soc.271, 423–435 (1982) · Zbl 0513.46037
[3] [BJS] Bo\.zejko, M., Januszkiewics, T., Spatzier, R.J.: Infinite Coxeter groups do not have Kazhdan’s property. J. Operator Theory,19, 63–68 (1988)
[4] [BSW] Barnett, C., Streater, R.F., Wilde, I.F.: The Ito-Clifford-integral: J. Funct. Anal.48, 172–212 (1982) · Zbl 0492.46051 · doi:10.1016/0022-1236(82)90066-0
[5] [CoH] Cockroft, A.M., Hudson, R.L.: Quantum mechanical Wiener process. J. Multivariate Anal.7, 107–124 (1977) · Zbl 0401.60086 · doi:10.1016/0047-259X(77)90035-5
[6] [CuH] Cushen, C.D., Hudson, R.L.: A quantum-mechanical central limit theorem. J. Appl. Prob.8, 454–469 (1971) · Zbl 0224.60049 · doi:10.2307/3212170
[7] [Cun] Cuntz, J.: SimpleC *-algebras generated by isometries. Commun. Math. Phys.57, 173–185 (1977) · Zbl 0399.46045 · doi:10.1007/BF01625776
[8] [Eva] Evans, D.E.: OnO n . Publ. RIMS, Kyoto Univ.16, 915–927 (1980) · Zbl 0461.46042 · doi:10.2977/prims/1195186936
[9] [GvW] Giri, N., von Waldenfels, W.: An algebraic version of the central limit theorem. Z. Wahrscheinlichkeitstheorie Verw. Gebiete42, 129–134 (1978) · Zbl 0362.60043 · doi:10.1007/BF00536048
[10] [Gre] Greenberg, O.W.:Q-mutators and violations of statistics. University of Maryland Preprint 91-034, 1990
[11] [Heg] Hegerfeld, G.C.: Noncommutative analogs of probabilistic notions and results. J. Funct. Anal.64, 436–456 (1985) · Zbl 0582.46062 · doi:10.1016/0022-1236(85)90068-0
[12] [HuP] Hudson, R.L., Parthasarathy, K.R.: Quantum Ito’s formula and stochastic evolution. Commun. Math. Phys.93, 301–323 (1984) · Zbl 0546.60058 · doi:10.1007/BF01258530
[13] [Küm 1] Kümmerer, B.: Survey on a theory of non-commutative stationary Markov processes. In: Quantum probability and applications. III. Oberwolfach 1987, Lecture Notes in Mathematics, vol. 1303. Berlin, Heidelberg, New York: Springer 1988, pp. 154–182
[14] [Küm 2] Kümmerer, B.: Markov dilations and non-commutative Poisson processes. Preprint
[15] [KPr] Kümmerer, B., Prin, J.: Generalized white noise and non-commutative stochastic integration. Preprint
[16] [KSp] Kümmerer, B., Speicher, R.: Stochastic integration on the Cuntz-algebraO Preprint
[17] [Maa 1] Maassen, H.: Theoretical concepts in quantum probability; quantum Markov processes. Preprint, Nijmegen 1988
[18] [Maa 2] Maassen, H.: Quantum Markov processes on Fock space described by integral kernels. In: Quantum probability and applications. II. Heidelberg 1984, Lecture Notes in Mathematics, vol. 1136, Berlin, Heidelberg, New York: Springer 1985, pp. 361–374
[19] [LiP] Lindsay, J.M., Parthasarathy, K.R.: Cohomology of power sets with applications in quantum probability. Commun. Math. Phys.124, 337–364 (1989) · Zbl 0678.60041 · doi:10.1007/BF01219655
[20] [PWo] Pusz, W., Woronowicz, S.L.: Twisted second quantization. Preprint · Zbl 0707.47039
[21] [Sch] Schur, I.: Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen. J. Reine Angew. Math.140, 1–29 (1911) · JFM 42.0367.01 · doi:10.1515/crll.1911.140.1
[22] [Sma] Schürmann, M.: Quantum stochastic processes with independent and additive increments. Preprint, Heidelberg 1989 · Zbl 0694.46045
[23] [Spe 1] Speicher, R.: A new example of ”Independence” and ”White noise”. Probab. Th. Rel. Fields84, 141–159 (1990) · Zbl 0671.60109 · doi:10.1007/BF01197843
[24] [Spe 2] Speicher, R.: Stochastic integration on the full Fock space with the help of a kernel calculus. To appear in Publ. RIMS27 (1991) · Zbl 0728.60060
[25] [Spe 3] Speicher, R.: In preparation
[26] [Voi 1] Voiculescu, D.: Symmetries of some reduced free productC *-algebras. In: Operator algebras and their connection with topology and ergodic theory. Busteni, Romania, 1983, Lecture Notes in Mathematics, vol. 1132, Berlin, Heidelberg, New York: Springer 1985
[27] [Voi 2] Voiculescu, D.: Addition of certain non-commuting random variables. J. Funct. Anal.66, 323–346 (1986) · Zbl 0651.46063 · doi:10.1016/0022-1236(86)90062-5
[28] [vWa] von Waldenfels, W.: An algebraic central limit theorem in the anti-commuting case. Z. Wahrscheinlichkeitstheorie Verw. Gebiete42, 135–140 (1978) · Zbl 0405.60095 · doi:10.1007/BF00536049
[29] [Wor 1] Woronowicz, S.L.: TwistedSU(2) group. An example of a non-commutative differential calculus. Publ. RIMS23, 117–181 (1987) · Zbl 0676.46050 · doi:10.2977/prims/1195176848
[30] [Wor 2] Woronowicz, S.L.: Tannaka-Krein duality for compact matrix pseudogroups. TwistedSU(N) groups. Invent. Math.93, 35–76 (1988) · Zbl 0664.58044 · doi:10.1007/BF01393687
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.