zbMATH — the first resource for mathematics

Quantile regression for nonlinear mixed effects models: a likelihood based perspective. (English) Zbl 1443.62096
Summary: Longitudinal data are frequently analyzed using normal mixed effects models. Moreover, the traditional estimation methods are based on mean regression, which leads to non-robust parameter estimation under non-normal error distribution. However, at least in principle, quantile regression (QR) is more robust in the presence of outliers/influential observations and misspecification of the error distributions when compared to the conventional mean regression approach. In this context, this paper develops a likelihood-based approach for estimating QR models with correlated continuous longitudinal data using the asymmetric Laplace distribution. Our approach relies on the stochastic approximation of the EM algorithm (SAEM algorithm), obtaining maximum likelihood estimates of the fixed effects and variance components in the case of nonlinear mixed effects (NLME) models. We evaluate the finite sample performance of the SAEM algorithm and asymptotic properties of the ML estimates through simulation experiments. Moreover, two real life datasets are used to illustrate our proposed method using the \(\texttt{qrNLMM}\) package from \(\texttt{R} \).
62G08 Nonparametric regression and quantile regression
62J05 Linear regression; mixed models
62L20 Stochastic approximation
62E15 Exact distribution theory in statistics
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI
[1] Aghamohammadi, A.; Mohammadi, S., Bayesian analysis of penalized quantile regression for longitudinal data, Stat Pap, 58, 4, 1035-1053 (2017) · Zbl 1416.62206
[2] Allassonnière, S.; Kuhn, E.; Trouvé, A., Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study, Bernoulli, 16, 3, 641-678 (2010) · Zbl 1220.62101
[3] Andriyana Y, Gijbels I, Verhasselt A (2016) Quantile regression in varying-coefficients models: non-crossing quantile curves and heteroscedasticity. Stat Pap. 10.1007/s00362-016-0847-7 · Zbl 1408.62065
[4] Barndorff-Nielsen, OE; Shephard, N., Non-gaussian ornstein-uhlenbeck-based models and some of their uses in financial economics, J R Stat Soc Ser B, 63, 2, 167-241 (2001) · Zbl 0983.60028
[5] Booth, JG; Hobert, JP, Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm, J R Stat Soc Ser B, 61, 1, 265-285 (1999) · Zbl 0917.62058
[6] Davidian, M.; Giltinan, D., Nonlinear models for repeated measurement data (1995), Boca Raton: CRC Press, Boca Raton
[7] Davidian, M.; Giltinan, D., Nonlinear models for repeated measurement data: an overview and update, J Agric Biol Environ Stat, 8, 4, 387-419 (2003)
[8] Delyon, B.; Lavielle, M.; Moulines, E., Convergence of a stochastic approximation version of the EM algorithm, Ann Stat, 8, 94-128 (1999) · Zbl 0932.62094
[9] Dempster, A.; Laird, N.; Rubin, D., Maximum likelihood from incomplete data via the EM algorithm, J R Stat Soc Ser B, 39, 1-38 (1977) · Zbl 0364.62022
[10] Fu, L.; Wang, Y., Quantile regression for longitudinal data with a working correlation model, Comput Stat Data Anal, 56, 8, 2526-2538 (2012) · Zbl 1252.62046
[11] Galarza, C.; Lachos, VH; Cabral, C.; Castro, L., Robust quantile regression using a generalized classs of skewed distributions, Statistics, 6, 113-130 (2017)
[12] Galvao, A., Quantile regression for dynamic panel data with fixed effects, J Econ, 164, 1, 142-157 (2011) · Zbl 1441.62695
[13] Galvao, A.; Montes-Rojas, GV, Penalized quantile regression for dynamic panel data, J Stat Plan Inference, 140, 11, 3476-3497 (2010) · Zbl 1205.62195
[14] Geraci, M.; Bottai, M., Quantile regression for longitudinal data using the asymmetric Laplace distribution, Biostatistics, 8, 1, 140-154 (2007) · Zbl 1170.62380
[15] Geraci, M.; Bottai, M., Linear quantile mixed models, Stat Comput, 24, 3, 461-479 (2014) · Zbl 1325.62010
[16] Grossman, Z.; Polis, M.; Feinberg, M.; Grossman, Z.; Levi, I.; Jankelevich, S.; Yarchoan, R.; Boon, J.; de Wolf, F.; Lange, J.; Goudsmit, J.; Dimitrov, D.; Paul, W., Ongoing HIV dissemination during HAART, Nat Med, 5, 10, 1099-1104 (1999)
[17] Hastings, WK, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 1, 97-109 (1970) · Zbl 0219.65008
[18] Huang, Y.; Dagne, G., A Bayesian approach to joint mixed-effects models with a skew-normal distribution and measurement errors in covariates, Biometrics, 67, 1, 260-269 (2011) · Zbl 1217.62032
[19] Koenker, R., Quantile regression for longitudinal data, J Multivar Anal, 91, 1, 74-89 (2004) · Zbl 1051.62059
[20] Koenker, R., Quantile regression (2005), New York: Cambridge University Press, New York · Zbl 1111.62037
[21] Kozubowski, T.; Nadarajah, S., Multitude of Laplace distributions, Stat Pap, 51, 127-148 (2010) · Zbl 1247.62040
[22] Kuhn, E.; Lavielle, M., Coupling a stochastic approximation version of EM with an MCMC procedure, ESAIM Probab Stat, 8, 115-131 (2004) · Zbl 1155.62420
[23] Kuhn, E.; Lavielle, M., Maximum likelihood estimation in nonlinear mixed effects models, Comput Stat Data Anal, 49, 4, 1020-1038 (2005) · Zbl 1429.62279
[24] Lachos, VH; Ghosh, P.; Arellano-Valle, RB, Likelihood based inference for skew-normal independent linear mixed models, Stat Sin, 20, 1, 303-322 (2010) · Zbl 1186.62071
[25] Lachos, VH; Castro, LM; Dey, DK, Bayesian inference in nonlinear mixed-effects models using normal independent distributions, Comput Stat Data Anal, 64, 237-252 (2013) · Zbl 06958954
[26] Lavielle, M., Mixed effects models for the population approach (2014), Boca Raton: Chapman and Hall/CRC, Boca Raton
[27] Lipsitz, SR; Fitzmaurice, GM; Molenberghs, G.; Zhao, LP, Quantile regression methods for longitudinal data with drop-outs: application to CD4 cell counts of patients infected with the human immunodeficiency virus, J R Stat Soc Ser C, 46, 4, 463-476 (1997) · Zbl 0908.62114
[28] Liu Y, Bottai M (2009) Mixed-effects models for conditional quantiles with longitudinal data. Int J Biostat. 10.2202/1557-4679.1186
[29] Louis, TA, Finding the observed information matrix when using the EM algorithm, J R Stat Soc Ser B, 44, 2, 226-233 (1982) · Zbl 0488.62018
[30] Metropolis, N.; Rosenbluth, AW; Rosenbluth, MN; Teller, AH; Teller, E., Equation of state calculations by fast computing machines, J Chem Phys, 21, 1087-1092 (1953) · Zbl 1431.65006
[31] Meza, C.; Osorio, F.; De la Cruz, R., Estimation in nonlinear mixed-effects models using heavy-tailed distributions, Stat Comput, 22, 121-139 (2012) · Zbl 1322.62030
[32] Mu, Y.; He, X., Power transformation toward a linear regression quantile, J Am Stat Assoc, 102, 269-279 (2007) · Zbl 1284.62428
[33] Perelson, AS; Essunger, P.; Cao, Y.; Vesanen, M.; Hurley, A.; Saksela, K.; Markowitz, M.; Ho, DD, Decay characteristics of HIV-1-infected compartments during combination therapy, Nature, 387, 6629, 188-191 (1997)
[34] Pinheiro, J.; Bates, D., Approximations to the log-likelihood function in the nonlinear mixed effects model, J Comput Gr Stat, 4, 12-35 (1995)
[35] Pinheiro, JC; Bates, DM, Mixed-effects models in S and S-PLUS (2000), New York: Springer, New York
[36] R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
[37] Searle, SR; Casella, G.; McCulloch, C., Variance components (1992), New York: Wiley, New York
[38] Sriram, K.; Ramamoorthi, R.; Ghosh, P., Posterior consitency of Bayesian quantile regression based on the misspecified asymmetric Laplace distribution, Bayesian Anal, 8, 2, 479-504 (2013) · Zbl 1329.62308
[39] Wang, J., Bayesian quantile regression for parametric nonlinear mixed effects models, Stat Methods Appl, 21, 279-295 (2012) · Zbl 1329.62150
[40] Wu, L., A joint model for nonlinear mixed-effects models with censoring and covariates measured with error, with application to AIDS studies, J Am Stat Assoc, 97, 460, 955-964 (2002) · Zbl 1048.62111
[41] Wu, L., Mixed effects models for complex data (2010), Boca Raton: Chapman & Hall/CRC, Boca Raton · Zbl 1268.62067
[42] Yu, K.; Moyeed, R., Bayesian quantile regression, Stat Probab Lett, 54, 4, 437-447 (2001) · Zbl 0983.62017
[43] Yu, K.; Zhang, J., A three-parameter asymmetric Laplace distribution and its extension, Commun Stat Theory Methods, 34, 9-10, 1867-1879 (2005) · Zbl 1072.62005
[44] Yuan, Y.; Yin, G., Bayesian quantile regression for longitudinal studies with nonignorable missing data, Biometrics, 66, 1, 105-114 (2010) · Zbl 1187.62183
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.