zbMATH — the first resource for mathematics

Mathematical modeling for 2D light-sheet fluorescence microscopy image reconstruction. (English) Zbl 1444.65062

65N21 Numerical methods for inverse problems for boundary value problems involving PDEs
35Q84 Fokker-Planck equations
35R30 Inverse problems for PDEs
92C55 Biomedical imaging and signal processing
Full Text: DOI
[1] Abbott A 2003 Biology’s new dimension Nature424 pp 870-2
[2] Bal G 2009 Inverse transport theory and applications Inverse Problems25 053001 · Zbl 1178.35377
[3] Bal G 2012 Introduction to Inverse Problems Lecture Notes (New York: Department of Applied Physics and Applied Mathematics, Columbia University)
[4] Bal G and Jollivet A 2011 Combined source and attenuation reconstructions in spect. Tomography and inverse transport theory Contemp. Math.559 13-27 · Zbl 1242.65224
[5] Bal G and Tamasan A 2007 Inverse source problems in transport equations SIAM J. Math. Anal.39 57-76 · Zbl 1135.35094
[6] Beck A and Teboulle M 2009 A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM J. Imag. Sci.2 183-202 · Zbl 1175.94009
[7] Börgers C and Larsen E W 1996 Asymptotic derivation of the Fermi pencil-beam approximation Nucl. Sci. Eng.123 343-57
[8] Börgers C and Larsen E W 1996 On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport Med. Phys.23 1749-59
[9] Calvetti D, Landi G, Reichel L and Sgallari F 2004 Non-negativity and iterative methods for ill-posed problems Inverse Problems20 1747 · Zbl 1077.65041
[10] Chen B-C et al 2014 Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution Science346 1257998
[11] Courdurier M, Monard F, Osses A and Romero F 2015 Simultaneous source and attenuation reconstruction in spect using ballistic and single scattering data Inverse Problems31 095002 · Zbl 1327.35434
[12] Leonard E 1948 Multiple scattering with energy loss Phys. Rev.74 1534
[13] Gazzola S, Hansen P C and Nagy J G 2019 Ir tools: a matlab package of iterative regularization methods and large-scale test problems Numer. Algorithms81 773-811 · Zbl 1415.65003
[14] Gazzola S and Nagy J G 2014 Generalized Arnoldi-Tikhonov method for sparse reconstruction SIAM J. Sci. Comput.36 B225-47 · Zbl 1298.76248
[15] Gazzola S and Wiaux Y 2017 Fast nonnegative least squares through flexible Krylov subspaces SIAM J. Sci. Comput.39 A655-79 · Zbl 1365.65161
[16] Girkin J M and Torres Carvalho M 2018 The light-sheet microscopy revolution J. Opt.20 053002
[17] Hansen P C 2010 Discrete Inverse Problems: Insight and Algorithms vol 7 (Philadelphia, PA: SIAM) · Zbl 1197.65054
[18] Hansen P C and Jørgensen J S 2018 Air tools ii: algebraic iterative reconstruction methods, improved implementation Numer. Algorithms79 107-37 · Zbl 1397.65007
[19] Alexander H 1988 The identification problem for the constantly attenuated radon transform Math. Z.197 13-9 · Zbl 0621.44005
[20] Jan H 2012 Slicing embryos gently with laser light sheets Bioessays34 406-11
[21] Jan H and Stainier D Y R 2007 Even fluorescence excitation by multidirectional selective plane illumination microscopy (mspim) Opt. Lett.32 2608-10
[22] Keller P J and Stelzer E H K 2008 Quantitative in vivo imaging of entire embryos with digital scanned laser light sheet fluorescence microscopy Curr. Opin. Neurobiol.18 624-32
[23] Lakowicz J R 2013 Principles of Fluorescence Spectroscopy (Berlin: Springer)
[24] Lam S, Lesage F and Intes X 2005 Time domain fluorescent diffuse optical tomography: analytical expressions Opt. Express13 2263-75
[25] Li J, Luisier F and Blu T 2017 Pure-let image DE convolution IEEE Trans. Image Process.27 92-105 · Zbl 1409.94350
[26] Lin F H 1990 A uniqueness theorem for parabolic equations Commun. Pure Appl. Math.43 127-36 · Zbl 0727.35063
[27] Nagy J G and Strakos Z 2000 Enforcing nonnegativity in image reconstruction algorithms Mathematical Modeling, Estimation, and Imaging vol 4121 pp 182-90
[28] Ntziachristos V 2006 Fluorescence molecular imaging Annu. Rev. Biomed. Eng.8 1-33
[29] Olarte O E, Andilla J, J Gualda E and Loza-Alvarez P 2018 Light-sheet microscopy: a tutorial Adv. Optic Photon10 111-79
[30] Reynaud E G, Kržič U, Greger K and Stelzer E H K 2008 Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage HFSP J.2 266-75
[31] Reynaud E G, Jan P, Jan H and Tomancak P 2014 Guide to light-sheet microscopy for adventurous biologists Nat. Methods12 30
[32] Ritter J G, Spille J-H, Kaminski T and Ulrich K 2011 A cylindrical zoom lens unit for adjustable optical sectioning in light sheet microscopy Biomed. Optic Express2 185-93
[33] Rossi B and Greisen K 1941 Cosmic-ray theory Rev. Mod. Phys.13 240
[34] Rudin L I, Stanley O and Fatemi E 1992 Nonlinear total variation based noise removal algorithms Phys. D Nonlinear Phenom.60 259-68 · Zbl 0780.49028
[35] Santi P A 2011 Light sheet fluorescence microscopy: a review J. Histochem. Cytochem.59 129-38
[36] Solmon D C 1995 The identification problem for the exponential radon transform Math. Methods Appl. Sci.18 687-95 · Zbl 0830.44002
[37] Stefanov P 2014 The identification problem for the attenuated x-ray transform Am. J. Math.136 1215-47 · Zbl 1305.44003
[38] Stuker F, Ripoll J and Rudin M 2011 Fluorescence molecular tomography: principles and potential for pharmaceutical research Pharm.3 229-74
[39] Wang Z, Bovik A C, Sheikh H R, P Simoncelli E et al 2004 Image quality assessment: from error visibility to structural similarity IEEE Trans. Image Process.13 600-12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.