Numerical loop-tree duality: contour deformation and subtraction. (English) Zbl 1436.81144

Summary: We introduce a novel construction of a contour deformation within the framework of Loop-Tree Duality for the numerical computation of loop integrals featuring threshold singularities in momentum space. The functional form of our contour deformation automatically satisfies all constraints without the need for fine-tuning. We demonstrate that our construction is systematic and efficient by applying it to more than 100 examples of finite scalar integrals featuring up to six loops. We also showcase a first step towards handling non-integrable singularities by applying our work to one-loop infrared divergent scalar integrals and to the one-loop amplitude for the ordered production of two and three photons. This requires the combination of our contour deformation with local counterterms that regulate soft, collinear and ultraviolet divergences. This work is an important step towards computing higher-order corrections to relevant scattering cross-sections in a fully numerical fashion.


81U05 \(2\)-body potential quantum scattering theory
81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
Full Text: DOI arXiv


[1] Kinoshita, T., Mass singularities of Feynman amplitudes, J. Math. Phys., 3, 650 (1962) · Zbl 0118.44501
[2] Lee, TD; Nauenberg, M., Degenerate Systems and Mass Singularities, Phys. Rev., 133, B1549 (1964)
[3] G. ’t Hooft and M.J.G. Veltman, Regularization and Renormalization of Gauge Fields, Nucl. Phys.B 44 (1972) 189 [INSPIRE].
[4] Bollini, CG; Giambiagi, JJ, Dimensional Renormalization: The Number of Dimensions as a Regularizing Parameter, Nuovo Cim., B 12, 20 (1972)
[5] Ashmore, JF, A Method of Gauge Invariant Regularization, Lett. Nuovo Cim., 4, 289 (1972)
[6] S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys.B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].
[7] S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
[8] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, EWN; Heinrich, G., Jet rates in electron-positron annihilation at \(O( {\alpha}_s^3 )\) in QCD, Phys. Rev. Lett., 100, 172001 (2008)
[9] Currie, J.; Glover, EWN; Pires, J., Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC, Phys. Rev. Lett., 118 (2017)
[10] Czakon, M., A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett., B 693, 259 (2010)
[11] Boughezal, R.; Caola, F.; Melnikov, K.; Petriello, F.; Schulze, M., Higgs boson production in association with a jet at next-to-next-to-leading order, Phys. Rev. Lett., 115 (2015)
[12] Del Duca, V.; Duhr, C.; Kardos, A.; Somogyi, G.; Trócsányi, Z., Three-Jet Production in Electron-Positron Collisions at Next-to-Next-to-Leading Order Accuracy, Phys. Rev. Lett., 117, 152004 (2016)
[13] Somogyi, G., Subtraction with hadronic initial states at NLO: An NNLO-compatible scheme, JHEP, 05, 016 (2009)
[14] Del Duca, V., Jet production in the CoLoRFulNNLO method: event shapes in electron-positron collisions, Phys. Rev., D 94 (2016)
[15] Caola, F.; Melnikov, K.; Röntsch, R., Nested soft-collinear subtractions in NNLO QCD computations, Eur. Phys. J., C 77, 248 (2017)
[16] Herzog, F., Geometric IR subtraction for final state real radiation, JHEP, 08, 006 (2018)
[17] L. Magnea, E. Maina, G. Pelliccioli, C. Signorile-Signorile, P. Torrielli and S. Uccirati, Local analytic sector subtraction at NNLO, JHEP12 (2018) 107 [Erratum ibid.1906 (2019) 013] [arXiv:1806.09570] [INSPIRE].
[18] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett.98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
[19] Grazzini, M.; Kallweit, S.; Wiesemann, M., Fully differential NNLO computations with MATRIX, Eur. Phys. J., C 78, 537 (2018)
[20] Cieri, L.; Chen, X.; Gehrmann, T.; Glover, EWN; Huss, A., Higgs boson production at the LHC using the q_Tsubtraction formalism at N^3LO QCD, JHEP, 02, 096 (2019)
[21] Boughezal, R., Color singlet production at NNLO in MCFM, Eur. Phys. J., C 77, 7 (2017)
[22] Boughezal, R.; Isgrò, A.; Petriello, F., Next-to-leading power corrections to V + 1 jet production in N -jettiness subtraction, Phys. Rev., D 101 (2020)
[23] Gaunt, J.; Stahlhofen, M.; Tackmann, FJ; Walsh, JR, N-jettiness Subtractions for NNLO QCD Calculations, JHEP, 09, 058 (2015)
[24] M. Cacciari, F.A. Dreyer, A. Karlberg, G.P. Salam and G. Zanderighi, Fully Differential Vector-Boson-Fusion Higgs Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett.115 (2015) 082002 [Erratum ibid.120 (2018) 139901] [arXiv:1506.02660] [INSPIRE].
[25] Currie, J.; Gehrmann, T.; Glover, EWN; Huss, A.; Niehues, J.; Vogt, A., N^3LO corrections to jet production in deep inelastic scattering using the Projection-to-Born method, JHEP, 05, 209 (2018)
[26] Anastasiou, C., Higgs boson gluon-fusion production at threshold in N^3LO QCD, Phys. Lett., B 737, 325 (2014)
[27] C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys.B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].
[28] C. Anastasiou and K. Melnikov, Pseudoscalar Higgs boson production at hadron colliders in NNLO QCD, Phys. Rev.D 67 (2003) 037501 [hep-ph/0208115] [INSPIRE].
[29] Dulat, F.; Mistlberger, B.; Pelloni, A., Precision predictions at N^3LO for the Higgs boson rapidity distribution at the LHC, Phys. Rev., D 99 (2019)
[30] Chetyrkin, KG; Tkachov, FV, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys., B 192, 159 (1981)
[31] Baikov, PA, Explicit solutions of the multiloop integral recurrence relations and its application, Nucl. Instrum. Meth., A 389, 347 (1997)
[32] Gehrmann, T.; Remiddi, E., Differential equations for two loop four point functions, Nucl. Phys., B 580, 485 (2000) · Zbl 1071.81089
[33] Anastasiou, C.; Gehrmann, T.; Oleari, C.; Remiddi, E.; Tausk, JB, The Tensor reduction and master integrals of the two loop massless crossed box with lightlike legs, Nucl. Phys., B 580, 577 (2000)
[34] Smirnov, AV; Smirnov, VA, Applying Grobner bases to solve reduction problems for Feynman integrals, JHEP, 01, 001 (2006)
[35] von Manteuffel, A.; Schabinger, RM, A novel approach to integration by parts reduction, Phys. Lett., B 744, 101 (2015) · Zbl 1330.81151
[36] Lee, RN, Group structure of the integration-by-part identities and its application to the reduction of multiloop integrals, JHEP, 07, 031 (2008)
[37] B. Ruijl, T. Ueda and J.A.M. Vermaseren, Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams, arXiv:1704.06650 [INSPIRE].
[38] Anastasiou, C.; Lazopoulos, A., Automatic integral reduction for higher order perturbative calculations, JHEP, 07, 046 (2004)
[39] A. von Manteuffel and C. Studerus, Reduze 2-Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
[40] R.N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals, J. Phys. Conf. Ser.523 (2014) 012059 [arXiv:1310.1145] [INSPIRE].
[41] Maierhöfer, P.; Usovitsch, J.; Uwer, P., Kira — A Feynman integral reduction program, Comput. Phys. Commun., 230, 99 (2018)
[42] A.V. Smirnov and F.S. Chuharev, FIRE6: Feynman Integral REduction with Modular Arithmetic, arXiv:1901.07808 [INSPIRE].
[43] Frellesvig, H.; Gasparotto, F.; Mandal, MK; Mastrolia, P.; Mattiazzi, L.; Mizera, S., Vector Space of Feynman Integrals and Multivariate Intersection Numbers, Phys. Rev. Lett., 123, 201602 (2019)
[44] Kosower, DA, Direct Solution of Integration-by-Parts Systems, Phys. Rev., D 98 (2018)
[45] Ita, H., Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys. Rev., D 94, 116015 (2016)
[46] Kotikov, AV, Differential equations method: New technique for massive Feynman diagrams calculation, Phys. Lett., B 254, 158 (1991)
[47] Papadopoulos, CG; Tommasini, D.; Wever, C., Two-loop Master Integrals with the Simplified Differential Equations approach, JHEP, 01, 072 (2015)
[48] Henn, JM, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett., 110, 251601 (2013)
[49] Lee, RN, Reducing differential equations for multiloop master integrals, JHEP, 04, 108 (2015) · Zbl 1388.81109
[50] R.N. Lee and A.A. Pomeransky, Normalized Fuchsian form on Riemann sphere and differential equations for multiloop integrals, arXiv:1707.07856 [INSPIRE].
[51] Primo, A.; Tancredi, L., On the maximal cut of Feynman integrals and the solution of their differential equations, Nucl. Phys., B 916, 94 (2017) · Zbl 1356.81136
[52] Adams, L.; Bogner, C.; Weinzierl, S., The two-loop sunrise integral around four space-time dimensions and generalisations of the Clausen and Glaisher functions towards the elliptic case, J. Math. Phys., 56 (2015) · Zbl 1320.81059
[53] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals on elliptic curves. Part I: general formalism, JHEP05 (2018) 093 [arXiv:1712.07089] [INSPIRE].
[54] Broedel, J.; Duhr, C.; Dulat, F.; Tancredi, L., Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral, Phys. Rev., D 97, 116009 (2018)
[55] Passarino, G., Elliptic Polylogarithms and Basic Hypergeometric Functions, Eur. Phys. J., C 77, 77 (2017)
[56] Broedel, J.; Duhr, C.; Dulat, F.; Penante, B.; Tancredi, L., Elliptic polylogarithms and Feynman parameter integrals, JHEP, 05, 120 (2019)
[57] Binoth, T.; Heinrich, G., An automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys., B 585, 741 (2000) · Zbl 1042.81565
[58] C. Anastasiou, S. Beerli and A. Daleo, Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically, JHEP05 (2007) 071 [hep-ph/0703282] [INSPIRE].
[59] A. Lazopoulos, K. Melnikov and F. Petriello, QCD corrections to tri-boson production, Phys. Rev.D 76 (2007) 014001 [hep-ph/0703273] [INSPIRE].
[60] Smirnov, AV; Tentyukov, MN, Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA), Comput. Phys. Commun., 180, 735 (2009) · Zbl 1198.81044
[61] Carter, J.; Heinrich, G., SecDec: A general program for sector decomposition, Comput. Phys. Commun., 182, 1566 (2011) · Zbl 1262.81119
[62] S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys. Commun.222 (2018) 313 [arXiv:1703.09692] [INSPIRE].
[63] Moriello, F., Generalised power series expansions for the elliptic planar families of Higgs + jet production at two loops, JHEP, 01, 150 (2020)
[64] Bonciani, R., Evaluating a family of two-loop non-planar master integrals for Higgs + jet production with full heavy-quark mass dependence, JHEP, 01, 132 (2020)
[65] Czakon, M., Tops from Light Quarks: Full Mass Dependence at Two-Loops in QCD, Phys. Lett., B 664, 307 (2008)
[66] Mandal, MK; Zhao, X., Evaluating multi-loop Feynman integrals numerically through differential equations, JHEP, 03, 190 (2019)
[67] Maltoni, F.; Mandal, MK; Zhao, X., Top-quark effects in diphoton production through gluon fusion at next-to-leading order in QCD, Phys. Rev., D 100 (2019)
[68] Borowka, S., Full top quark mass dependence in Higgs boson pair production at NLO, JHEP, 10, 107 (2016)
[69] S. Borowka et al., Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys. Rev. Lett.117 (2016) 012001 [Erratum ibid.117 (2016) 079901] [arXiv:1604.06447] [INSPIRE].
[70] Czakon, M.; Fiedler, P.; Mitov, A., Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through \(O( {\alpha}_s^4 )\), Phys. Rev. Lett., 110, 252004 (2013)
[71] Gong, W.; Nagy, Z.; Soper, DE, Direct numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. Rev., D 79 (2009)
[72] Becker, S.; Reuschle, C.; Weinzierl, S., Numerical NLO QCD calculations, JHEP, 12, 013 (2010) · Zbl 1294.81267
[73] Becker, S.; Goetz, D.; Reuschle, C.; Schwan, C.; Weinzierl, S., NLO results for five, six and seven jets in electron-positron annihilation, Phys. Rev. Lett., 108 (2012)
[74] Becker, S.; Reuschle, C.; Weinzierl, S., Efficiency Improvements for the Numerical Computation of NLO Corrections, JHEP, 07, 090 (2012)
[75] Becker, S.; Weinzierl, S., Direct numerical integration for multi-loop integrals, Eur. Phys. J., C 73, 2321 (2013)
[76] Catani, S.; Gleisberg, T.; Krauss, F.; Rodrigo, G.; Winter, J-C, From loops to trees by-passing Feynman’s theorem, JHEP, 09, 065 (2008) · Zbl 1245.81117
[77] Bierenbaum, I.; Catani, S.; Draggiotis, P.; Rodrigo, G., A Tree-Loop Duality Relation at Two Loops and Beyond, JHEP, 10, 073 (2010) · Zbl 1291.81381
[78] Capatti, Z.; Hirschi, V.; Kermanschah, D.; Ruijl, B., Loop-Tree Duality for Multiloop Numerical Integration, Phys. Rev. Lett., 123, 151602 (2019)
[79] W. Kilian and T. Kleinschmidt, Numerical Evaluation of Feynman Loop Integrals by Reduction to Tree Graphs, arXiv:0912.3495 [INSPIRE].
[80] Soper, DE, QCD calculations by numerical integration, Phys. Rev. Lett., 81, 2638 (1998)
[81] Soper, DE, Techniques for QCD calculations by numerical integration, Phys. Rev., D 62, 014009 (2000)
[82] Nagy, Z.; Soper, DE, General subtraction method for numerical calculation of one loop QCD matrix elements, JHEP, 09, 055 (2003)
[83] Assadsolimani, M.; Becker, S.; Weinzierl, S., A Simple formula for the infrared singular part of the integrand of one-loop QCD amplitudes, Phys. Rev., D 81 (2010)
[84] Buchta, S.; Chachamis, G.; Draggiotis, P.; Rodrigo, G., Numerical implementation of the loop-tree duality method, Eur. Phys. J., C 77, 274 (2017)
[85] Anastasiou, C.; Sterman, G., Removing infrared divergences from two-loop integrals, JHEP, 07, 056 (2019)
[86] C. Anastasiou, R. Haindl, G. Sterman, Z. Yang and M. Zeng, Removing infrared divergences from two-loop amplitudes I, to appear.
[87] R. Runkel, Z. Szőr, J.P. Vesga and S. Weinzierl, Causality and loop-tree duality at higher loops, Phys. Rev. Lett.122 (2019) 111603 [Erratum ibid.123 (2019) 059902] [arXiv:1902.02135] [INSPIRE].
[88] Aguilera-Verdugo, JJ, Causality, unitarity thresholds, anomalous thresholds and infrared singularities from the loop-tree duality at higher orders, JHEP, 12, 163 (2019) · Zbl 1431.81156
[89] Soper, DE, QCD calculations by numerical integration, Phys. Rev. Lett., 81, 2638 (1998)
[90] Soper, DE, Techniques for QCD calculations by numerical integration, Phys. Rev., D 62, 014009 (2000)
[91] Becker, S.; Weinzierl, S., Direct numerical integration for multi-loop integrals, Eur. Phys. J., C 73, 2321 (2013)
[92] Becker, S.; Weinzierl, S., Direct contour deformation with arbitrary masses in the loop, Phys. Rev., D 86 (2012)
[93] Becker, S.; Reuschle, C.; Weinzierl, S., Efficiency Improvements for the Numerical Computation of NLO Corrections, JHEP, 07, 090 (2012)
[94] Hernandez-Pinto, RJ; Sborlini, GFR; Rodrigo, G., Towards gauge theories in four dimensions, JHEP, 02, 044 (2016) · Zbl 1388.81329
[95] F. Driencourt-Mangin, G. Rodrigo, G.F.R. Sborlini and W.J. Torres Bobadilla, On the interplay between the loop-tree duality and helicity amplitudes, arXiv:1911.11125 [INSPIRE]. · Zbl 1431.81156
[96] Gell-Mann, M.; Low, F., Bound states in quantum field theory, Phys. Rev., 84, 350 (1951) · Zbl 0044.23301
[97] F. Driencourt-Mangin, G. Rodrigo, G.F.R. Sborlini and W.J. Torres Bobadilla, On the interplay between the loop-tree duality and helicity amplitudes, arXiv:1911.11125 [INSPIRE]. · Zbl 1431.81156
[98] Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, GFR; Torres Bobadilla, WJ, Universal four-dimensional representation of H → γγ at two loops through the Loop-Tree Duality, JHEP, 02, 143 (2019)
[99] Usyukina, NI; Davydychev, AI, An Approach to the evaluation of three and four point ladder diagrams, Phys. Lett., B 298, 363 (1993)
[100] Srednyak, S.; Sterman, G., Perturbation theory in (2, 2) signature, Phys. Rev., D 87, 105017 (2013)
[101] Agrawal, A.; Verschueren, R.; Diamond, S.; Boyd, S., A rewriting system for convex optimization problems, J. Control Decision, 5, 42 (2018)
[102] A. Domahidi, E. Chu and S. Boyd, ECOS: An SOCP solver for embedded systems, in European Control Conference (ECC), Zürich Switzerland (2013), pg. 3071.
[103] T. Hahn, CUBA: A Library for multidimensional numerical integration, Comput. Phys. Commun.168 (2005) 78 [hep-ph/0404043] [INSPIRE]. · Zbl 1196.65052
[104] Lepage, GP, A New Algorithm for Adaptive Multidimensional Integration, J. Comput. Phys., 27, 192 (1978) · Zbl 0377.65010
[105] Hirschi, V.; Frederix, R.; Frixione, S.; Garzelli, MV; Maltoni, F.; Pittau, R., Automation of one-loop QCD corrections, JHEP, 05, 044 (2011) · Zbl 1296.81138
[106] Alwall, J., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP, 07, 079 (2014) · Zbl 1402.81011
[107] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [INSPIRE]. · Zbl 1116.81067
[108] P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP06 (2012) 095 [Erratum ibid.1211 (2012) 128] [arXiv:1203.0291] [INSPIRE]. · Zbl 1397.81010
[109] Ossola, G.; Papadopoulos, CG; Pittau, R., CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042 (2008)
[110] Peraro, T., Ninja: Automated Integrand Reduction via Laurent Expansion for One-Loop Amplitudes, Comput. Phys. Commun., 185, 2771 (2014) · Zbl 1360.81021
[111] Hirschi, V.; Peraro, T., Tensor integrand reduction via Laurent expansion, JHEP, 06, 060 (2016) · Zbl 1388.81006
[112] van Hameren, A., OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun., 182, 2427 (2011) · Zbl 1262.81253
[113] Basso, B.; Dixon, LJ, Gluing Ladder Feynman Diagrams into Fishnets, Phys. Rev. Lett., 119 (2017)
[114] H. Frellesvig, M. Hidding, L. Maestri, F. Moriello and G. Salvatori, The complete set of two-loop master integrals for Higgs + jet production in QCD, arXiv:1911.06308 [INSPIRE].
[115] Carrazza, S.; Ellis, RK; Zanderighi, G., QCDLoop: a comprehensive framework for one-loop scalar integrals, Comput. Phys. Commun., 209, 134 (2016) · Zbl 1375.81229
[116] H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, Report number KEK-91-11 (1992).
[117] Bierenbaum, I.; Buchta, S.; Draggiotis, P.; Malamos, I.; Rodrigo, G., Tree-Loop Duality Relation beyond simple poles, JHEP, 03, 025 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.