×

zbMATH — the first resource for mathematics

Quantifying macrophage defects in type 1 diabetes. (English) Zbl 1443.92078
Summary: Macrophages from animals prone to autoimmune (type 1) diabetes differ from those of diabetes-resistant animals in processing and clearing apoptotic cells. Using in vitro time-course assays of the number of engulfed apoptotic cells observed within macrophages, we quantified these differences in non-obese diabetic (NOD) versus Balb/c mice. Simple models lead to several elementary parameter estimation techniques. We used these to compute approximate rates of macrophage engulfment and digestion of apoptotic cells from basic features of the data (such as initial rise-times, phagocytic index and percent phagocytosis). Combining these estimates with full fitting of a sequence of model variants to the data, we find that macrophages from normal (Balb/c) mice engulf apoptotic cells up to four times faster than macrophages from the diabetes-prone (NOD) mice. Further, Balb/c macrophages appear to undergo an activation step before achieving their high engulfment rate. In NOD macrophages, we did not see evidence for this activation step. Rates of digestion of engulfed apoptotic cells by macrophages are similar in both types. Since macrophage clearance is an important mechanism of disposal of self-antigen, these macrophage defects could potentially be a factor in predisposition to type 1 diabetes.
MSC:
92C32 Pathology, pathophysiology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akaike, H., Information theory as an extension of the maximum likelihood principle, (Petrov, B. N.; Csaki, F., Second International Symposium on Information Theory (1973), Akademiai Kiado: Akademiai Kiado Budapest), 267-281
[2] Alleva, D. G.; Pavlovich, R. P.; Grant, C.; Kaser, S. B.; Beller, D. I., Aberrant macrophage cytokine production is a conserved feature among autoimmune-prone mouse strainselevated interleukin (IL)-12 and an imbalance in tumor necrosis factor-alpha and IL-10 define a unique cytokine profile in macrophages from young nonobese diabetic mice, Diabetes, 49, 1106-1115 (2000)
[3] Bellingan, G. J.; Caldwell, H.; Howie, S. E.M.; Dransfield, I.; Haslett, C., In vivo fate of the inflammatory macrophage during the resolution of inflammationinflammatory macrophages do not die locally, but emigrate to the draining lymph nodes, J. Immunol., 157, 2577-2585 (1996)
[4] Burnham, K. P.; Anderson, D. R., Model Selection and Multimodel InferenceA Practical Information-Theoretic Approach (2002), Springer: Springer New York
[5] Cocco, R. E.; Ucker, D. S., Distinct modes of macrophage recognition for apoptotic and necrotic cells are not specified exclusively by phosphatidylserine exposure, Mol. Biol. Cell, 12, 919-930 (2001)
[6] Edelstein-Keshet, L., Mathematical Models in Biology (1988), Random House: Random House New York, (Chapter 1)
[7] Erwig, L.-P.; Gordon, S.; Walsh, G. M.; Rees, A. J., Previous uptake of apoptotic neutrophils or ligation of integrin receptors downmodulates the ability of macrophages to ingest apoptotic neutrophils, Blood, 93, 1406-1412 (1999)
[8] Gammack, D.; Doering, C. R.; Kirschner, D. E., Macrophage response to Mycobacterium tuberculosis infection, J. Math. Biol., 48, 218-242 (2004)
[9] Georgiou, H. M.; Constantinou, D.; Mandel, T. E., Prevention of autoimmunity in nonobese diabetic (NOD) mice by neonatal transfer of allogeneic thymic macrophages, Autoimmunity, 21, 89-97 (1995)
[10] Gordon, S., The role of the macrophage in immune regulation, Res. Immunol., 149, 685-688 (1998)
[11] Hurvich, C. M.; Tsai, C.-L., Regression and time series model selection in small samples, Biometrika, 76, 297-307 (1989)
[12] Jun, H.-S.; Yoon, C.-S.; Zbytnuik, L.; Van Rooijen, N.; Yoon, J.-W., The role of macrophages in T cell-mediated autoimmune diabetes in nonobese diabetic mice, J. Exp. Med., 189, 347-358 (1999)
[13] Levenberg, K., A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math., 2, 164-168 (1944)
[14] Licht, R.; Jacobs, C. W.M.; Tax, W. J.M.; Berden, J. H.M., No constitutive defect in phagocytosis of apoptotic cells by resident peritoneal macrophages from pre-morbid lupus mice, Lupus, 10, 102-107 (2001)
[15] Marquardt, D. W., An algorithm for least squares estimation of nonlinear parameters, SIAM J., 11, 431-441 (1963)
[16] Mathis, D.; Vence, L.; Benoist, C., \( \beta \)-Cell death during progression to diabetes, Nature, 414, 6865, 792-798 (2001)
[17] Mendes, P., GEPASIa software package for modelling the dynamics, steady states and control of biochemical and other systems, Comput. Appl. Biosci., 9, 563-571 (1993)
[18] Mendes, P., Biochemistry by numberssimulation of biochemical pathways with GEPASI 3, Trends Biochem. Sci., 22, 361-363 (1997)
[19] Mendes, P.; Kell, D. B., Non-linear optimization of biochemical pathwaysapplications to metabolic engineering and parameter estimation, Bioinformatics, 14, 869-883 (1998)
[20] Motulsky, H.J., Christopoulos, A., 2003. Fitting Models to Biological Data using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting. GraphPad Software Inc., San Diego, CA.
[21] O’Brien, B. A.; Fieldus, W. E.; Field, C. J.; Finegood, D. T., Clearance of apoptotic beta-cells is reduced in neonatal autoimmune diabetes-prone rats, Cell Death & Differentiation, 9, 457-464 (2002)
[22] O’Brien, B. A.; Huang, Y.; Geng, X.; Dutz, J. P.; Finegood, D. T., Phagocytosis of apoptotic cells by macrophages from NOD mice is reduced, Diabetes, 51, 2481-2488 (2002)
[23] Sakamoto, Y.; Ishiguro, M.; Kitagawa, G., Akaike Information Criterion Statistics (1986), KTK Scientific Publishers: KTK Scientific Publishers Tokyo
[24] Shimada, A.; Takei, I.; Maruyama, T.; Kasuga, A.; Kasatani, T.; Watanabe, K.; Asaba, Y.; Ishii, T.; Tadakuma, T.; Habu, S., Acceleration of diabetes in young NOD mice with peritoneal macrophages, Diabetes Res. Clin. Practice, 24, 69-76 (1994)
[25] Sugiura, N., Further analysis of the data by Akaike’s information criterion and the finite corrections, Commun. Statist. Theory, Meth. A, 7, 13-26 (1978)
[26] Tran, C. L.; Jones, A. D.; Donaldson, K., Mathematical model of phagocytosis and inflammation after the inhalation of quartz at different concentrations, Scand. J. Work Environ. Health, 21, 50-54 (1995)
[27] Trudeau, J. D.; Dutz, J. P.; Arany, E.; Hill, D. J.; Fieldus, W. E.; Finegood, D. T., Neonatal beta-cell apoptosisa trigger for autoimmune diabetes?, Diabetes, 49, 1-7 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.