On the use of independent component analysis to denoise side-channel measurements. (English) Zbl 1450.94039

Fan, Junfeng (ed.) et al., Constructive side-channel analysis and secure design. 9th international workshop, COSADE 2018, Singapore, April 23–24, 2018. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 10815, 61-81 (2018).
Summary: Independent Component Analysis (ICA) is a powerful technique for blind source separation. It has been successfully applied to signal processing problems, such as feature extraction and noise reduction, in many different areas including medical signal processing and telecommunication. In this work, we propose a framework to apply ICA to denoise side-channel measurements and hence to reduce the complexity of key recovery attacks. Based on several case studies, we afterwards demonstrate the overwhelming advantages of ICA with respect to the commonly used preprocessing techniques such as the singular spectrum analysis. Mainly, we target a software masked implementation of an AES and a hardware unprotected one. Our results show a significant Signal-to-Noise Ratio (SNR) gain which translates into a gain in the number of traces needed for a successful side-channel attack. This states the ICA as an important new tool for the security assessment of cryptographic implementations.
For the entire collection see [Zbl 1439.94001].


94A60 Cryptography
Full Text: DOI HAL


[1] Python implementation of FastICA algorithm. http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
[2] Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 1-14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_1
[3] Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and masking at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 599-619. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_30
[4] Batina, L., Hogenboom, J., van Woudenberg, J.G.J.: Getting more from PCA: first results of using principal component analysis for extensive power analysis. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 383-397. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27954-6_24 · Zbl 1292.94026
[5] Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129-1159 (1995)
[6] Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: NICV: normalized inter-class variance for detection of side-channel leakage. In: International Symposium on Electromagnetic Compatibility (EMC 2014/Tokyo). Session OS09: EM Information Leakage. Hitotsubashi Hall (National Center of Sciences), Chiyoda, Tokyo, Japan. IEEE, 12-16 May 2014
[7] Bhasin, S., Danger, J.-L., Guilley, S., Najm, Z.: Side-channel leakage and trace compression using normalized inter-class variance. In: Proceedings of the Third Workshop on Hardware and Architectural Support for Security and Privacy, HASP 2014, pp. 7:1-7:9. ACM, New York (2014)
[8] Bohy, L., Neve, M., Samyde, D., Quisquater, J.J.: Principal and independent component analysis for crypto-systems with hardware unmasked units. In: Proceedings of e-Smart 2003 (2003)
[9] Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16-29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2 · Zbl 1104.68467
[10] Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information extraction in the presence of masking. In: Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146, pp. 1-22. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54669-8_1
[11] Cardoso, J.F.: Python and Matlab implementations of JADE algorithm. https://github.com/camilleanne/pulse/blob/master/jade.py and http://perso.telecom-paristech.fr/ cardoso/Algo/Jade/jadeR.m
[12] Cardoso, J.F.: Infomax and maximum likelihood for blind source separation. IEEE Sig. Process. Lett. 4(4), 112-114 (1997)
[13] Cardoso, J.F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. IEE Proc. F - Radar Sig. Process. 140(6), 362-370 (1993)
[14] Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253-270. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5_17 · Zbl 1440.94038
[15] Comon, P.: Independent component analysis, a new concept? Sig. Process. 36(3), 287-314 (1994) · Zbl 0791.62004
[16] Comon, P., Jutten, C.: Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Cambridge (2010)
[17] China Consulting Consortium: Common Criteria (aka CC) for Information Technology Security Evaluation (ISO/IEC 15408) (2013). http://www.commoncriteriaportal.org/
[18] Debande, N., Souissi, Y., Elaabid, M.A., Guilley, S., Danger, J.-L.: Wavelet transform based pre-processing for side channel analysis. In: HASP, Vancouver, British Columbia, Canada, pp. 32-38. IEEE, 2 December 2012. https://doi.org/10.1109/MICROW.2012.15
[19] Ding, A.A., Chen, C., Eisenbarth, T.: Simpler, faster, and more robust t-test based leakage detection. In: Standaert, F.-X., Oswald, E. (eds.) COSADE 2016. LNCS, vol. 9689, pp. 163-183. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43283-0_10
[20] Durvaux, F., Standaert, F.-X.: From improved leakage detection to the detection of points of interests in leakage traces. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 240-262. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_10 · Zbl 1384.94058
[21] Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(7), 179-188 (1936)
[22] Friedman, J.H., Tukey, J.W.: A projection pursuit algorithm for exploratory data analysis. IEEE Trans. Comput. 23(9), 881-890 (1974) · Zbl 0284.68079
[23] Gao, S., Chen, H., Wu, W., Fan, L., Cao, W., Ma, X.: My traces learn what you did in the dark: recovering secret signals without key guesses. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 363-378. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_21 · Zbl 1383.94019
[24] Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., Yarom, Y.: ECDSA key extraction from mobile devices via nonintrusive physical side channels. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS 2016, pp. 1626-1638. ACM, New York (2016)
[25] Georgiev, P., Theis, F.J.: Blind source separation of linear mixtures with singular matrices. In: Puntonet, C.G., Prieto, A. (eds.) ICA 2004. LNCS, vol. 3195, pp. 121-128. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30110-3_16
[26] Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426-442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27
[27] Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15-29. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_2
[28] Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel resistance validation. In: NIST Non-Invasive Attack Testing Workshop, September 2011. http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
[29] Huber, P.J.: Projection pursuit. Ann. Stat. 13(2), 435-475 (1985) · Zbl 0595.62059
[30] Hyvärinen, A.: New approximations of differential entropy for independent component analysis and projection pursuit. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems 10, pp. 273-279. MIT Press (1998)
[31] Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. Trans. Neur. Netw. 10(3), 626-634 (1999)
[32] Hyvärinen, A.: Sparse code shrinkage: denoising of nongaussian data by maximum likelihood estimation. Neural Comput. 11(7), 1739-1768 (1999)
[33] Hyvärinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7), 1483-1492 (1997)
[34] Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13, 411-430 (2000)
[35] Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics. Springer, Heidelberg (2002). ISBN 0387954422 · Zbl 1011.62064
[36] Jutten, C., Herault, J.: Blind separation of sources, part i: an adaptive algorithm based on neuromimetic architecture. Sig. Process. 24(1), 1-10 (1991) · Zbl 0729.73650
[37] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25 · Zbl 0942.94501
[38] Le, T.-H., Cledière, J., Servière, C., Lacoume, J.-L.: Noise reduction in side channel attack using fourth-order cumulant. IEEE Trans. Inf. Forensics Secur. 2(4), 710-720 (2007). https://doi.org/10.1109/TIFS.2007.910252
[39] Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC it to EM: electromagnetic side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620-640. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_31
[40] Maghrebi, H., Servant, V., Bringer, J.: There is wisdom in harnessing the strengths of your enemy: customized encoding to thwart side-channel attacks. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 223-243. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_12 · Zbl 1387.94093
[41] Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets of Smart Cards. Springer, Heidelberg (2006). https://doi.org/10.1007/978-0-387-38162-6. http://www.dpabook.org/. ISBN 0-387-30857-1 · Zbl 1131.68449
[42] Merino Del Pozo, S., Standaert, F.-X.: Blind source separation from single measurements using singular spectrum analysis. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 42-59. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_3 · Zbl 1380.94017
[43] Nadal, J.-P., Parga, N.: Nonlinear neurons in the low-noise limit: a factorial code maximizes information transfer. Netw.: Comput. Neural Syst. 5(4), 565-581 (1994) · Zbl 0824.92010
[44] Naik, G.R., Wang, W.: Blind Source Separation: Advances in Theory, Algorithms and Applications. Springer Publishing Company, Heidelberg (2014). Incorporated · Zbl 1298.94002
[45] O’Flynn, C., Chen, Z.D.: ChipWhisperer: an open-source platform for hardware embedded security research. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 243-260. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_17CrossRefGoogle Scholar · Zbl 1440.94072
[46] Prouff, E., Rivain, M., Bévan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Comput. 58(6), 799-811 (2009) · Zbl 1367.94339
[47] Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495-513. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_25 · Zbl 1380.68171
[48] Souissi, Y., Guilley, S., Danger, J.-L., Duc, G., Mekki, S.: Improvement of power analysis attacks using Kalman filter. In: ICASSP, IEEE Signal Processing Society, Dallas, TX, USA, 14-19 March 2010, pp. 1778-1781. IEEE (2010). https://doi.org/10.1109/ICASSP.2010.5495428
[49] Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to compare and combine power and electromagnetic information leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411-425. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_26
[50] Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443-461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_26 · Zbl 1239.94066
[51] TELECOM ParisTech SEN research group. DPA Contest \((2^\text{nd}\) edition) 2009-2010. http://www.DPAcontest.org/v2/
[52] van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 104-119. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19074-2_8 · Zbl 1284.94130
[53] Wang, R. · Zbl 1395.93373
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.