SCATTER: a new dimension in side-channel. (English) Zbl 1450.94045

Fan, Junfeng (ed.) et al., Constructive side-channel analysis and secure design. 9th international workshop, COSADE 2018, Singapore, April 23–24, 2018. Proceedings. Cham: Springer. Lect. Notes Comput. Sci. 10815, 135-152 (2018).
Summary: Side-channel techniques have been progressing over the last few years, leading to the creation of a variety of statistical tools, aiming at extracting secrets handled in cryptographic algorithms. Noticeably, the vast majority of side-channel techniques requires to get the traces aligned together prior to applying statistics. This prerequisite turns out to be challenging in the practical realization of attacks as implementations tend to include hardware or software countermeasures to increase this difficulty. This is typically achieved by adding random jitters or random executions with fake operations. In this paper, we introduce the new side-channel technique scatter, whose potential is to tackle alignment issues. By construction, scatter brings an additional dimension and opens the door to a large set of potential new attack techniques. The effectiveness of scatter has been proven on both simulated traces and real world secure products. In summary scatter is a new side-channel technique offering a valuable alternative when the trace alignment represents an issue. Furthermore, scatter represents a suitable option for low-cost attacks, as the requirements in terms of equipment and expertise are significantly reduced.
For the entire collection see [Zbl 1439.94001].


94A60 Cryptography


Full Text: DOI HAL


[1] Akkar, M.-L., Giraud, C.: An implementation of DES and AES, secure against some attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 309-318. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_26 · Zbl 1006.68702
[2] Batina, L., Robshaw, M. (eds.): CHES 2014. LNCS, vol. 8731. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44709-3 · Zbl 1316.68002
[3] Belgarric, P., Bhasin, S., Bruneau, N., Danger, J.-L., Debande, N., Guilley, S., Heuser, A., Najm, Z., Rioul, O.: Time-frequency analysis for second-order attacks. IACR Cryptology ePrint Archive 2016:772 (2016)
[4] Jun, B., Rohatgi, P.: Is your design leaking keys? Efficient testing for side-channel leakage. In: RSA Conference (2013)
[5] Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis: hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 215-236. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_11 · Zbl 1429.94052
[6] Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16-29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2 · Zbl 1104.68467
[7] Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13-28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_3 · Zbl 1019.68541
[8] Clavier, C., Coron, J.-S., Dabbous, N.: Differential power analysis in the presence of hardware countermeasures. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 252-263. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_20 · Zbl 0998.94539
[9] Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292-302. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_25 · Zbl 0955.94009
[10] Coron, J.-S.: A new DPA countermeasure based on permutation tables. In: Ostrovsky, R., De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 278-292. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3_19 · Zbl 1180.68149
[11] Coron, J.-S., Goubin, L.: On Boolean and arithmetic masking against differential power analysis. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 231-237. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_18 · Zbl 0998.94537
[12] Coron, J.-S., Kizhvatov, I.: An efficient method for random delay generation in embedded software. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 156-170. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_12 · Zbl 1290.94058
[13] Debande, N., Souissi, Y., Abdelaziz Elaabid, M., Guilley, S., Danger, J.-L.: Wavelet transform based pre-processing for side channel analysis. In: 45th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2012, Workshops Proceedings, Vancouver, BC, Canada, 1-5 December 2012, pp. 32-38. IEEE Computer Society (2012)
[14] Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks and leakage modeling. J. Cryptogr. Eng. 1(2), 123-144 (2011)
[15] Standaert, F.-X.: How (not) to use Welch’s T-test in side-channel security evaluations (2017)
[16] Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 262-280. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_18 · Zbl 1293.94065
[17] Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207-228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_11 · Zbl 1380.94091
[18] Genkin, D., Pipman, I., Tromer, E.: Get your hands off my laptop: physical side-channel key-extraction attacks on PCs. In: Batina and Robshaw [2], pp. 242-260
[19] Genkin, D., Shamir, A., Tromer, E.: RSA key extraction via low-bandwidth acoustic cryptanalysis. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 444-461. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_25 · Zbl 1345.94063
[20] Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426-442. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_27
[21] Gierlichs, B., Lemke-Rust, K., Paar, C.: Templates vs. stochastic methods. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15-29. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_2
[22] Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A Testing methodology for side channel resistance validation. In: NIST Non Invasive Attack Testing Workshop (2011)
[23] Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104-113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9 · Zbl 1329.94070
[24] Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25 · Zbl 0942.94501
[25] Linge, Y., Dumas, C., Lambert-Lacroix, S.: Using the joint distributions of a cryptographic function in side channel analysis. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol. 8622, pp. 199-213. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10175-0_14 · Zbl 1440.94066
[26] Liu, W., Wu, L., Zhang, X., Wang, A.: Wavelet-based noise reduction in power analysis attack. In: Tenth International Conference on Computational Intelligence and Security, Kunming, Yunnan, China, 15-16 November 2014, CIS 2014, pp. 405-409. IEEE Computer Society (2014)
[27] Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the success rate of higher-order side-channel attacks. In: Batina and Robshaw [2], pp. 35-54 · Zbl 1383.94030
[28] Mangard, S., Standaert, F.-X. (eds.): CHES 2010. LNCS, vol. 6225. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 · Zbl 1193.68012
[29] Messerges, T.S.: Using second-order power analysis to attack DPA resistant software. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 238-251. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_19 · Zbl 0998.94538
[30] Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In: Mangard and Standaert [28], pp. 125-139 · Zbl 1297.94093
[31] Muijrers, R.A., van Woudenberg, J.G.J., Batina, L.: RAM: rapid alignment method. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 266-282. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-8_17
[32] Oswald, E., Mangard, S., Herbst, C., Tillich, S.: Practical second-order DPA attacks for masked smart card implementations of block ciphers. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 192-207. Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_13 · Zbl 1125.94327
[33] Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank estimation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61-81. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53140-2_4 · Zbl 1380.94117
[34] Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential power analysis. IEEE Trans. Comput. 58(6), 799-811 (2009) · Zbl 1367.94339
[35] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard and Standaert [28], pp. 413-427 · Zbl 1321.94087
[36] Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30-46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262_3
[37] Tunstall, M., Benoit, O.: Efficient use of random delays in embedded software. In: Sauveron, D., Markantonakis, K., Bilas, A., Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 27-38. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72354-7_3
[38] Tunstall, M., Whitnall, C., Oswald, E.: Masking tables—an underestimated security risk. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 425-444. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_22 · Zbl 1321.94094
[39] van Woudenberg, J. · Zbl 1284.94130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.