×

zbMATH — the first resource for mathematics

Low-dissipation centred schemes for hyperbolic equations in conservative and non-conservative form. (English) Zbl 1437.65119
Summary: We propose a one-parameter family of low-dissipation centred numerical schemes for solving hyperbolic equations in conservative or non-conservative form, using finite volume or discontinuous Galerkin finite element methods. The new schemes spring out from the multi-dimensional FORCE method and are determined by a single parameter \(\alpha \geq 1\). Given an increasing sequence of real numbers \(1 \leq \alpha_1 < \alpha_2 < \dots < \alpha_K\), there corresponds a sequence of numerical schemes with stability restriction associated to a decreasing sequence of Courant numbers \(1 > c_1 > c_2 > \dots > c_K > 0\) and a decreasing sequence of corresponding numerical viscosity functions \(d_1 > d_2 > \dots > d_K\). For a given Courant number \(c_k \leq 1\) there is a real number \(\alpha_k > 0\) and a corresponding stable scheme with minimal numerical viscosity \(d_k\). The proposed schemes suit very well the family of high-order discontinuous Galerkin finite element methods and the recently proposed class of ADER-TR schemes, whose orders of accuracy define decreasing sequences of Courant numbers, as the order of accuracy increases.
The centred methods of this paper are stable in 2D and 3D in the frame of simultaneous updating formulae, unlike other centred methods, such as 1D FORCE, which are not. Furthermore, the schemes are highly accurate for slowly-moving waves, which is precisely the kind of waves that traditional centred methods smear disastrously. Additional features of the proposed schemes include ease of implementation and applicability to any hyperbolic system either in conservative or non-conservative form.
Here, the proposed schemes are analysed and computationally assessed through a suite of test problems for a linear model system, for the Euler equations in one and two space dimensions, and for the Baer-Nunziato equations for compressible two-phase flow.

MSC:
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
Software:
PVM ; HLLE; HLLC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baer, M. R.; Nunziato, J. W., A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials, J. Multiph. Flow, 12, 861-889 (1986) · Zbl 0609.76114
[2] Billett, S. J.; Toro, E. F., On the accuracy and stability of explicit schemes for multidimensional linear homogeneous advection equations, J. Comput. Phys., 131, 247-250 (1997) · Zbl 0868.65060
[3] Canestrelli, A.; Siviglia, A.; Dumbser, M.; Toro, E. F., Well-balanced high-order centred schemes for non-conservative hyperbolic systems. Application to shallow water with fixed and mobile bed, Adv. Water Resour., 32, 6, 834-844 (2009)
[4] Castro, M. J.; Gallardo, J. M.; Marquina, A., A class of computationally fast first order finite volume solvers: PVM methods, SIAM J. Sci. Comput., 34, A2173-A2196 (2012) · Zbl 1253.65167
[5] Castro, M. J.; Gallardo, J. M.; Marquina, A., A class of incomplete Riemann solvers based on uniform rational approximations to the absolute value function, J. Sci. Comput., 60, 2, 363-389 (2014) · Zbl 1299.76181
[6] Chen, G. Q.; Toro, E. F., Centred schemes for non-linear hyperbolic equations, J. Hyperbolic Differ. Equ., 1, 1, 531-566 (2004) · Zbl 1063.65076
[7] Degond, P.; Peyrard, P. F.; Russo, G.; Velledieu, P., Polynomial upwind schemes for hyperbolic systems, C. R. Acad. Sci. Paris, Ser. I Math., 328, 479-483 (1999) · Zbl 0933.65101
[8] Dematté, R.; Titarev, V. A.; Motecinos, G. I.; Toro, E. F., ADER methods for hyperbolic equations with a time-reconstruction solver for the generalized Riemann problem. The scalar case, Commun. Appl. Math. Comput., 2, 369-402 (2020)
[9] Dumbser, M.; Balsara, D., A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems, J. Comput. Phys., 304, 275-319 (2016) · Zbl 1349.76603
[10] Dumbser, M.; Castro, M. J.; Parés, C.; Toro, E. F.; Hidalgo, A., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. Methods Appl. Mech. Eng., 199, 9-12, 625-647 (2010) · Zbl 1227.76043
[11] Dumbser, M.; Peshkov, I.; Romenski, E.; Zanotti, O., High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids, J. Comput. Phys., 314, 824-862 (2016) · Zbl 1349.76324
[12] Dumbser, Michael; Toro, Eleuterio F., A simple extension of the Osher Riemann solver to general non-conservative hyperbolic systems, J. Sci. Comput., 48, 70-88 (2011) · Zbl 1220.65110
[13] Dumbser, Michael; Toro, Eleuterio F., On universal Osher-type schemes for general nonlinear hyperbolic conservation laws, Commun. Comput. Phys., 10, 635-671 (2011) · Zbl 1373.76125
[14] Glimm, J., Solution in the large for nonlinear hyperbolic systems of equations, Commun. Pure Appl. Math., 18, 697-715 (1965) · Zbl 0141.28902
[15] Godlewski, E.; Raviart, P. A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118 (1996), Springer-Verlag: Springer-Verlag New York · Zbl 1063.65080
[16] Godunov, S. K.; Romenskii, E. I., Elements of Continuum Mechanics and Conservation Laws (2003), Kluwer Academic/Plenum Publishers · Zbl 1031.74004
[17] Godunov, S. K.; Zabrodin, A. V.; Prokopov, G. P., J. Comp. Math. Phys. USSR, 1, 1187 (1962)
[18] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61 (1983) · Zbl 0565.65051
[19] Kurganov, A.; Noelle, S.; Petrova, G., Semi-discrete central-upwind scheme for hyperbolic conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23, 707-740 (2001) · Zbl 0998.65091
[20] Lax, P. D., Weak solutions of nonlinear hyperbolic equations and their numerical computation, Commun. Pure Appl. Math., VII, 159-193 (1954) · Zbl 0055.19404
[21] Lax, P. D.; Wendroff, B., Systems of conservation laws, Commun. Pure Appl. Math., 13, 217-237 (1960) · Zbl 0152.44802
[22] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems (2002), Cambridge University Press · Zbl 1010.65040
[23] Montecinos, G. I.; Müller, L. O.; Toro, E. F., Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes, J. Comput. Phys., 266, 101-123 (2014) · Zbl 1323.92065
[24] Montecinos, G. I.; Toro, E. F., Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes, J. Comput. Phys., 275, 415-442 (2014) · Zbl 1349.65378
[25] Nessyahu, H.; Tadmor, E., Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463 (1990) · Zbl 0697.65068
[26] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. Numer. Anal., 44, 300-321 (2006) · Zbl 1130.65089
[27] Peshkov, Ilya; Romenskiy, Evgeniy, A hyperbolic model for viscous Newtonian flows, Contin. Mech. Thermodyn., 28, 1, 85-104 (2008) · Zbl 1348.76046
[28] Schmidtmann, B.; Winters, A. R., Hybrid entropy stable HLL-type Riemann solvers for hyperbolic conservation laws, J. Comput. Phys., 330, 566-570 (2017) · Zbl 1378.76060
[29] Sod, G. A., A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys., 27, 1-31 (1978) · Zbl 0387.76063
[30] Steger, J. L.; Warming, R. F., Flux vector splitting of the inviscid gasdynamic equations with applications to finite difference methods, J. Comput. Phys., 40, 263-293 (1981) · Zbl 0468.76066
[31] Tokareva, S. A.; Toro, E. F., HLLC-type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow, J. Comput. Phys., 229, 3573-3604 (2010) · Zbl 1391.76440
[32] Toro, E. F., Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations (17th June, 2003), Isaac Newton Institute for Mathematical Sciences, University of Cambridge: Isaac Newton Institute for Mathematical Sciences, University of Cambridge UK, Technical Report NI03037-NPA
[33] Toro, E. F., On Glimm-Related Schemes for Conservation Laws (1996), Department of Mathematics and Physics, Manchester Metropolitan University: Department of Mathematics and Physics, Manchester Metropolitan University UK, Technical Report MMU-9602
[34] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1997), Springer-Verlag · Zbl 0888.76001
[35] Toro, E. F., Shock-Capturing Methods for Free-Surface Shallow Flows (2001), Wiley and Sons Ltd. · Zbl 0996.76003
[36] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (2009), Springer-Verlag · Zbl 1227.76006
[37] Toro, E. F.; Titarev, V. A., MUSTA schemes for systems of conservation laws, J. Comput. Phys., 216, 403-429 (2006) · Zbl 1097.65091
[38] Toro, E. F.; Billett, S. J., Centred TVD Schemes for Hyperbolic Conservation Laws (1996), Department of Mathematics and Physics, Manchester Metropolitan University: Department of Mathematics and Physics, Manchester Metropolitan University UK, Technical Report MMU-9603 · Zbl 0943.65100
[39] Toro, E. F.; Billett, S. J., Centred TVD schemes for hyperbolic conservation laws, IMA J. Numer. Anal., 20, 47-79 (2000) · Zbl 0943.65100
[40] Toro, E. F.; Hidalgo, A.; Dumbser, M., FORCE schemes on unstructured meshes I: conservative hyperbolic systems, J. Comput. Phys., 228, 3368-3389 (2009) · Zbl 1168.65377
[41] Toro, E. F.; Montecinos, G. I., Advection-diffusion-reaction equations: hyperbolization and high-order ADER discretizations, SIAM J. Sci. Comput., 36, 5, A2423-A2457 (2014) · Zbl 1307.65117
[42] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25-34 (1994) · Zbl 0811.76053
[43] Toro, E. F.; Titarev, V. A., MUSTA Schemes for Systems of Conservation Laws (2004), Isaac Newton Institute for Mathematical Sciences, University of Cambridge: Isaac Newton Institute for Mathematical Sciences, University of Cambridge UK, Technical Report NI04033-NPA · Zbl 1097.65091
[44] Toro, E. F.; Vázquez-Cendón, M. E., Flux splitting schemes for the Euler equations, Comput. Fluids, 70, 1-12 (2012) · Zbl 1365.76243
[45] Toro, Eleuterio F., The Riemann problem: solvers and numerical fluxes, (Abgrall, R.; Shu, C. W., Handbook of Numerical Methods for Hyperbolic Problems, vol. 17 (2016), Elsevier), 19-54, (Chapter 2)
[46] Torrilhon, M., Krylov-Riemann solver for large hyperbolic systems of conservation laws, SIAM J. Sci. Comput., 34, A2072-A2091 (2012) · Zbl 1253.65137
[47] van Leer, B., Flux-Vector Splitting for the Euler Equations (1982), NASA Langley Research Center: NASA Langley Research Center USA, Technical Report ICASE 82-30
[48] Vázquez-Cendón, M. E., Solving Hyperbolic Equations with Finite Volume Methods (2015), Springer · Zbl 1319.65086
[49] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173 (1984) · Zbl 0573.76057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.