×

zbMATH — the first resource for mathematics

A dynamically load-balanced parallel \(p\)-adaptive implicit high-order flux reconstruction method for under-resolved turbulence simulation. (English) Zbl 1437.76035
Summary: We present a dynamically load-balanced parallel \(p\)-adaptive implicit high-order flux reconstruction method for under-resolved turbulence simulation. The high-order explicit first stage, singly diagonal implicit Runge-Kutta (ESDIRK) method is employed to circumvent the restriction on the time step size. The pseudo transient continuation is coupled with the matrix-free restarted generalized minimal residual (GMRES) method to solve the nonlinear equations at each stage, except the first one, of ESDIRK. We use the spectral decay smoothness indicator as the refinement/coarsening indicator for \(p\)-adaptation. A dynamic load balancing technique is developed with the aid of the open-source library ParMETIS. The trivial cost, compared to implicit time stepping, of mesh repartitioning and data redistribution enables us to conduct \(p\)-adaptation and load balancing every time step. An isentropic vortex propagation case is employed to study the impact of element weights used in mesh repartitioning on parallel efficiency. We apply the \(p\)-adaptive solver for implicit large eddy simulation (ILES) of the transitional flows over a cylinder when Reynolds number (Re) is 3900 and the SD7003 wing when Re is 60000. Numerical experiments demonstrate that a significant reduction in the run time (up to 70%) and total number of solution points (up to 76%) can be achieved with \(p\)-adaptation.
MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76N06 Compressible Navier-Stokes equations
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[2] Cockburn, B.; Hou, S.; Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comput., 54, 190, 545-581 (1990) · Zbl 0695.65066
[3] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 2, 267-279 (1997) · Zbl 0871.76040
[4] Cockburn, B.; Shu, C.-W., Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput., 16, 3, 173-261 (2001) · Zbl 1065.76135
[5] Bassi, F.; Crivellini, A.; Rebay, S.; Savini, M., Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and k-ω turbulence model equations, Comput. Fluids, 34, 4-5, 507-540 (2005) · Zbl 1138.76043
[6] Hesthaven, J. S.; Warburton, T., Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (2008), Springer-Verlag: Springer-Verlag New York · Zbl 1134.65068
[7] Gassner, G. J.; Beck, A. D., On the accuracy of high-order discretizations for underresolved turbulence simulations, Theor. Comput. Fluid Dyn., 27, 3-4, 221-237 (2013)
[8] Uranga, A.; Persson, P.-O.; Drela, M.; Peraire, J., Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method, Int. J. Numer. Methods Eng., 87, 1-5, 232-261 (2011) · Zbl 1242.76085
[9] Liu, Y.; Vinokur, M.; Wang, Z. J., Spectral difference method for unstructured grids I: basic formulation, J. Comput. Phys., 216, 2, 780-801 (2006) · Zbl 1097.65089
[10] Zhou, Y.; Wang, Z. J., Implicit large Eddy simulation of low Reynolds number transitional flow over a wing using high-order spectral difference method, (40th Fluid Dynamics Conference and Exhibit (2010)), 4442
[11] Castonguay, P.; Liang, C.; Jameson, A., Simulation of transitional flow over airfoils using the spectral difference method, (40th Fluid Dynamics Conference and Exhibit (2010)), 4626
[12] Yu, M. L.; Wang, Z. J.; Hu, H., A high-order spectral difference method for unstructured dynamic grids, Comput. Fluids, 48, 84-97 (2011) · Zbl 1271.76234
[13] Galbraith, M.; Visbal, M., Implicit large eddy simulation of low Reynolds number flow past the SD7003 airfoil, (46th AIAA Aerospace Sciences Meeting and Exhibit (2008)), 225
[14] Garmann, D. J.; Visbal, M. R.; Orkwis, P. D., Comparative study of implicit and subgrid-scale model large-eddy simulation techniques for low-Reynolds number airfoil applications, Int. J. Numer. Methods Fluids, 71, 12, 1546-1565 (2013) · Zbl 1430.76304
[15] Boom, P.; Zingg, D., Time-accurate flow simulations using an efficient newton-krylov-schur approach with high-order temporal and spatial discretization, (51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2013)), 383
[16] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867 (2014) · Zbl 1457.65140
[17] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268, 17-38 (2014) · Zbl 1349.65336
[18] Huynh, H. T., A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, (18th AIAA Computational Fluid Dynamics Conference (2007)), 4079
[19] Huynh, H. T., A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion, (47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2009)), 403
[20] Wang, Z. J.; Gao, H., A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids, J. Comput. Phys., 228, 21, 8161-8186 (2009) · Zbl 1173.65343
[21] Vincent, P. E.; Castonguay, P.; Jameson, A., A new class of high-order energy stable flux reconstruction schemes, J. Sci. Comput., 47, 1, 50-72 (2011) · Zbl 1433.76094
[22] Romero, J.; Asthana, K.; Jameson, A., A simplified formulation of the flux reconstruction method, J. Sci. Comput., 67, 1, 351-374 (2016) · Zbl 1339.65180
[23] Wang, L.; Yu, M., Compact direct flux reconstruction for conservation laws, J. Sci. Comput., 1-23 (2017)
[24] Witherden, F. D.; Farrington, A. M.; Vincent, P. E., PyFR: an open source framework for solving advection-diffusion type problems on streaming architectures using the flux reconstruction approach, Comput. Phys. Commun., 185, 11, 3028-3040 (2014) · Zbl 1348.65005
[25] Fernandez, P.; Nguyen, N.-C.; Peraire, J., Subgrid-scale modeling and implicit numerical dissipation in DG-based large-Eddy simulation, (23rd AIAA Computational Fluid Dynamics Conference (2017)), 3951
[26] Gassner, G. J., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253 (2013) · Zbl 1275.65065
[27] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280
[28] Kirby, R. M.; Karniadakis, G. E., De-aliasing on non-uniform grids: algorithms and applications, J. Comput. Phys., 191, 1, 249-264 (2003) · Zbl 1161.76534
[29] Mengaldo, G.; De Grazia, D.; Moxey, D.; Vincent, P. E.; Sherwin, S. J., Dealiasing techniques for high-order spectral element methods on regular and irregular grids, J. Comput. Phys., 299, 56-81 (2015) · Zbl 1352.65396
[30] Tadmor, E., Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal., 26, 1, 30-44 (1989) · Zbl 0667.65079
[31] Karamanos, G.; Karniadakis, G. E., A spectral vanishing viscosity method for large-eddy simulations, J. Comput. Phys., 163, 1, 22-50 (2000) · Zbl 0984.76036
[32] Pasquetti, R., Spectral vanishing viscosity method for large-eddy simulation of turbulent flows, J. Sci. Comput., 27, 1-3, 365-375 (2006) · Zbl 1101.76028
[33] Gottlieb, D.; Hesthaven, J. S., Spectral methods for hyperbolic problems, J. Comput. Appl. Math., 128, 1-2, 83-131 (2001) · Zbl 0974.65093
[34] Hesthaven, J.; Kirby, R., Filtering in Legendre spectral methods, Math. Comput., 77, 263, 1425-1452 (2008) · Zbl 1195.65138
[35] Fischer, P.; Mullen, J., Filter-based stabilization of spectral element methods, C. R. Acad. Sci., Ser. 1 Math., 332, 3, 265-270 (2001) · Zbl 0990.76064
[36] Li, Y.; Premasuthan, S.; Jameson, A., Comparison of h-and p-adaptations for spectral difference methods, AIAA Pap., 4435 (2010)
[37] Woopen, M.; Balan, A.; May, G.; Schütz, J., A comparison of hybridized and standard DG methods for target-based hp-adaptive simulation of compressible flow, Comput. Fluids, 98, 3-16 (2014) · Zbl 1391.76368
[38] Gassner, G.; Staudenmaier, M.; Hindenlang, F.; Atak, M.; Munz, C.-D., A space-time adaptive discontinuous Galerkin scheme, Comput. Fluids, 117, 247-261 (2015) · Zbl 1390.65106
[39] Tugnoli, M.; Abbà, A.; Bonaventura, L.; Restelli, M., A locally p-adaptive approach for large Eddy simulation of compressible flows in a DG framework, J. Comput. Phys., 349, 33-58 (2017) · Zbl 1380.76025
[40] Naddei, F.; de la Llave Plata, M.; Couaillier, V., A comparison of refinement indicators for p-adaptive discontinuous Galerkin methods for the Euler and Navier-Stokes equations, (2018 AIAA Aerospace Sciences Meeting (2018)), 0368
[41] Hartmann, R.; Houston, P., Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys., 183, 2, 508-532 (2002) · Zbl 1057.76033
[42] Gao, H.; Wang, Z., A residual-based procedure for Hp-adaptation on 2-D hybrid meshes, (49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2011)), 492
[43] Kompenhans, M.; Rubio, G.; Ferrer, E.; Valero, E., Comparisons of p-adaptation strategies based on truncation-and discretisation-errors for high order discontinuous Galerkin methods, Comput. Fluids, 139, 36-46 (2016) · Zbl 1390.76329
[44] Venditti, D. A.; Darmofal, D. L., Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows, J. Comput. Phys., 187, 1, 22-46 (2003) · Zbl 1047.76541
[45] Wang, L.; Mavriplis, D. J., Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations, J. Comput. Phys., 228, 20, 7643-7661 (2009) · Zbl 1391.76367
[46] Fidkowski, K. J.; Darmofal, D. L., Review of output-based error estimation and mesh adaptation in computational fluid dynamics, AIAA J., 49, 4, 673-694 (2011)
[47] Fidkowski, K. J.; Luo, Y., Output-based space-time mesh adaptation for the compressible Navier-Stokes equations, J. Comput. Phys., 230, 14, 5753-5773 (2011) · Zbl 1416.76211
[48] Bassi, F.; Colombo, A.; Crivellini, A.; Fidkowski, K.; Franciolini, M.; Ghidoni, A.; Noventa, G., An entropy-adjoint p-adaptive discontinuous Galerkin method for the under-resolved simulation of turbulent flows, (AIAA Aviation 2019 Forum (2019)), 3418
[49] Fidkowski, K. J.; Roe, P. L., An entropy adjoint approach to mesh refinement, SIAM J. Sci. Comput., 32, 3, 1261-1287 (2010) · Zbl 1213.65142
[50] Persson, P.-O.; Peraire, J., Sub-cell shock capturing for discontinuous Galerkin methods, (44th AIAA Aerospace Sciences Meeting and Exhibit (2006)), 112
[51] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comput., 52, 186, 411-435 (1989) · Zbl 0662.65083
[52] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 1, 89-112 (2001) · Zbl 0967.65098
[53] Kennedy, C. A.; Carpenter, M. H., Diagonally implicit Runge-Kutta methods for ordinary differential equations. A review (2016), NASA/TM-2016-219173
[54] Bassi, F.; Botti, L.; Colombo, A.; Ghidoni, A.; Massa, F., Linearly implicit Rosenbrock-type Runge-Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows, Comput. Fluids, 118, 305-320 (2015) · Zbl 1390.76833
[55] Wang, L.; Yu, M., A comparative study of implicit Jacobian-free Rosenbrock-Wanner, ESDIRK and BDF methods for unsteady flow simulation with high-order flux reconstruction formulations (2019), preprint
[56] Franciolini, M.; Crivellini, A.; Nigro, A., On the efficiency of a matrix-free linearly implicit time integration strategy for high-order discontinuous Galerkin solutions of incompressible turbulent flows, Comput. Fluids, 159, 276-294 (2017) · Zbl 1390.76312
[57] Knoll, D. A.; Keyes, D. E., Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193, 2, 357-397 (2004) · Zbl 1036.65045
[58] Kennedy, C.; Carpenter, M., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 139-181 (2003) · Zbl 1013.65103
[59] Pareschi, L.; Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25, 1, 129-155 (2005) · Zbl 1203.65111
[60] Wang, L.; Yu, M., Jacobian-free implicit p-adaptive high-order compact direct flux reconstruction methods for unsteady flow simulation, (AIAA Aviation 2019 Forum (2019)), 3062
[61] Karypis, G., METIS and ParMETIS, (Encyclopedia of Parallel Computing (2011)), 1117-1124
[62] Yu, M.; Wang, Z. J., On the connection between the correction and weighting functions in the correction procedure via reconstruction method, J. Sci. Comput., 54, 1, 227-244 (2013) · Zbl 1259.65154
[63] Williams, D. M.; Castonguay, P.; Vincent, P. E.; Jameson, A., Energy stable flux reconstruction schemes for advection-diffusion problems on triangles, J. Comput. Phys., 250, 53-76 (2013) · Zbl 1349.65528
[64] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 2, 357-372 (1981) · Zbl 0474.65066
[65] Bijl, H.; Carpenter, M. H.; Vatsa, V. N.; Kennedy, C. A., Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: laminar flow, J. Comput. Phys., 179, 1, 313-329 (2002) · Zbl 1060.76079
[66] Mulder, W. A.; Van Leer, B., Experiments with implicit upwind methods for the Euler equations, J. Comput. Phys., 59, 2, 232-246 (1985) · Zbl 0584.76014
[67] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H., PETSc users manual (2015), Argonne National Laboratory, Tech. Rep. ANL-95/11 - Revision 3.6
[68] Wang, L.; Yu, M., An implicit high-order preconditioned flux reconstruction method for low-Mach-number flow simulation with dynamic meshes, Int. J. Numer. Methods Fluids (2019)
[69] Wang, L.; Yu, M., An implicit P-multigrid flux reconstruction method for simulation of locally preconditioned unsteady Navier-Stokes equations at low Mach numbers (2019), preprint
[70] Burstedde, C.; Wilcox, L. C.; Ghattas, O., p4est: scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput., 33, 3, 1103-1133 (2011) · Zbl 1230.65106
[71] Lange, M.; Mitchell, L.; Knepley, M. G.; Gorman, G. J., Efficient mesh management in firedrake using petsc dmplex, SIAM J. Sci. Comput., 38, 5, S143-S155 (2016) · Zbl 1352.65613
[72] Lehmkuhl, O.; Rodríguez, I.; Borrell, R.; Oliva, A., Low-frequency unsteadiness in the vortex formation region of a circular cylinder, Phys. Fluids, 25, 8, Article 085109 pp. (2013)
[73] Bassi, F.; Botti, L.; Colombo, A.; Crivellini, A.; Ghidoni, A.; Massa, F., On the development of an implicit high-order discontinuous Galerkin method for DNS and implicit LES of turbulent flows, Eur. J. Mech. B, Fluids, 55, 367-379 (2016) · Zbl 1408.76360
[74] Selig, M. S., Summary of Low Speed Airfoil Data, Vol. 1 (1995), SoarTech Publications
[75] Beck, A. D.; Bolemann, T.; Flad, D.; Frank, H.; Gassner, G. J.; Hindenlang, F.; Munz, C.-D., High-order discontinuous Galerkin spectral element methods for transitional and turbulent flow simulations, Int. J. Numer. Methods Fluids, 76, 8, 522-548 (2014)
[76] Vermeire, B. C.; Witherden, F. D.; Vincent, P. E., On the utility of GPU accelerated high-order methods for unsteady flow simulations: a comparison with industry-standard tools, J. Comput. Phys., 334, 497-521 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.