Hu, Yueke Mass equidistribution on the torus in the depth aspect. (English) Zbl 1476.58032 Algebra Number Theory 14, No. 4, 927-946 (2020). It is known that the quantum unique ergodicity (QUE) propery in the arithmetic setting is a special case of the conjecture by Z. Rudnick and P. Sarnak [Commun. Math. Phys. 161, No. 1, 195–213 (1994; Zbl 0836.58043)] regarding the asymptotic behavior of the mass measure associated to a normalized holomorphic modular form or Maass form.The aim of the present paper is to study the equidistribution of the restriction of the mass of automorphic newforms to a nonsplit torus in the depth aspect. To this direction the author manages to prove a better result than the already known results on the similar problem in the eigenvalue aspect by using a relatively elementary method which makes use of the known effective QUE result in the depth aspect. Reviewer: Chryssoula Ganatsiou (Larissa) MSC: 58J51 Relations between spectral theory and ergodic theory, e.g., quantum unique ergodicity 37A30 Ergodic theorems, spectral theory, Markov operators 11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols 22E50 Representations of Lie and linear algebraic groups over local fields 37A46 Relations between ergodic theory and harmonic analysis Keywords:equidistribution in the depth aspect; restriction of mass measure to torus; quantum unique ergodicity (QUE) propery Citations:Zbl 0836.58043 PDF BibTeX XML Cite \textit{Y. Hu}, Algebra Number Theory 14, No. 4, 927--946 (2020; Zbl 1476.58032) Full Text: DOI Link OpenURL References: [1] 10.4007/annals.2011.174.1.18 · Zbl 1322.11039 [2] 10.1007/s00039-015-0318-7 · Zbl 1400.11097 [3] 10.1017/CBO9780511609572 [4] 10.1215/S0012-7094-07-13834-1 · Zbl 1131.35053 [5] 10.1007/BF01428197 · Zbl 0239.10015 [6] 10.4310/MRL.2013.v20.n3.a5 · Zbl 1288.58017 [7] 10.4310/MRL.2018.v25.n6.a4 · Zbl 1442.11092 [8] 10.1088/0951-7715/26/1/35 · Zbl 1278.81100 [9] 10.1007/s00039-013-0237-4 · Zbl 1328.11044 [10] ; Holowinsky, Ann. of Math. (2), 172, 1517 (2010) [11] 10.1353/ajm.2017.0004 · Zbl 1393.11041 [12] 10.1093/imrn/rnw322 · Zbl 1444.11099 [13] 10.1215/00127094-2008-052 · Zbl 1222.11065 [14] 10.4007/annals.2006.163.165 · Zbl 1104.22015 [15] 10.1090/S0894-0347-2011-00700-5 · Zbl 1234.11061 [16] 10.1215/00127094-3166736 · Zbl 1377.11059 [17] ; Michel, International Congress of Mathematicians, 421 (2006) [18] 10.1007/s10240-010-0025-8 · Zbl 1376.11040 [19] 10.1215/00127094-144287 · Zbl 1273.11069 [20] 10.1215/00127094-2019-0005 · Zbl 1428.11093 [21] 10.1090/S0894-0347-2013-00779-1 · Zbl 1322.11051 [22] 10.1007/BF02099418 · Zbl 0836.58043 [23] ; Soundararajan, Ann. of Math. (2), 172, 1529 (2010) [24] 10.1007/s00039-013-0220-0 · Zbl 1277.53088 [25] 10.4007/annals.2010.172.989 · Zbl 1214.11051 [26] ; Waldspurger, Compositio Math., 54, 173 (1985) [27] 10.1016/j.aim.2018.10.030 · Zbl 1476.11084 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.