×

A moving lemma for relative 0-cycles. (English) Zbl 1440.14036

Summary: We prove a moving lemma for the additive and ordinary higher Chow groups of relative \(0\)-cycles of regular semilocal \(k\)-schemes essentially of finite type over an infinite perfect field. From this, we show that the cycle classes can be represented by cycles that possess certain finiteness, surjectivity, and smoothness properties. It plays a key role in showing that the crystalline cohomology of smooth varieties can be expressed in terms of algebraic cycles.

MSC:

14C25 Algebraic cycles
14F42 Motivic cohomology; motivic homotopy theory
19E15 Algebraic cycles and motivic cohomology (\(K\)-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] 10.1007/978-1-4757-5323-3
[2] 10.1002/mana.19891410124 · Zbl 0699.14006
[3] 10.1016/0001-8708(86)90081-2 · Zbl 0608.14004
[4] ; Bloch, J. Algebraic Geom., 3, 537 (1994)
[5] ; Colliot-Thélène, Algebraic K-theory. Fields Inst. Commun., 16, 31 (1997)
[6] ; Grothendieck, Inst. Hautes Études Sci. Publ. Math., 24, 5 (1965)
[7] ; Grothendieck, Inst. Hautes Études Sci. Publ. Math., 28, 5 (1966)
[8] ; Grothendieck, Inst. Hautes Études Sci. Publ. Math., 32, 5 (1967)
[9] 10.1007/s002220100193 · Zbl 1027.19004
[10] 10.1007/978-3-662-02421-8
[11] 10.1007/s00222-012-0418-z · Zbl 1268.13009
[12] ; Harris, Curves in projective space. Sémin. Math. Sup., 85 (1982) · Zbl 0511.14014
[13] 10.1007/978-1-4757-3849-0
[14] ; Jouanolou, Théorèmes de Bertini et applications. Prog. Math., 42 (1983) · Zbl 0519.14002
[15] 10.1093/imrn/rnz018 · Zbl 1480.14004
[16] 10.1080/00927877908822375 · Zbl 0401.14002
[17] 10.1515/CRELLE.2008.041 · Zbl 1158.14009
[18] 10.2140/ant.2012.6.293 · Zbl 1263.14012
[19] 10.1093/imrn/rnt193 · Zbl 1349.14020
[20] ; Krishna, Doc. Math., 21, 49 (2016)
[21] 10.2422/2036-2145.201509_010 · Zbl 1401.14045
[22] ; Liu, Algebraic geometry and arithmetic curves. Oxford Grad. Texts Math., 6 (2002) · Zbl 0996.14005
[23] 10.1017/CBO9781139171762
[24] 10.1353/ajm.0.0035 · Zbl 1176.14001
[25] 10.1090/S1056-3911-06-00446-2 · Zbl 1122.14006
[26] ; Samuel, Lectures on old and new results on algebraic curves. Tata Inst. Fund. Res. Lect. Math., 36 (1966) · Zbl 0165.24102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.