Albeverio, Sergio; De Vecchi, Francesco C.; Gubinelli, Massimiliano Elliptic stochastic quantization. (English) Zbl 1446.60041 Ann. Probab. 48, No. 4, 1693-1741 (2020). The authors first introduce the notions of strong and weak solutions to two-dimensional elliptic multidimensional stochastic partial differential equations and prove the existence of strong solutions (and thus also of weak solutions) under some hypothesis. The authors also provide a representation of weak solutions via the theory of transformation of measures on abstract Wiener spaces developed by A. S. Üstünel and M. Zakai [Transformation of measure on Wiener space. Berlin: Springer (2000; Zbl 0938.46045)]. Further, the authors prove a dimensional reduction result for the solution to elliptic stochastic partial differential equations and show the convergence of weak solutions using the convergence of potentials. The authors also propose a brief introduction to supersymmetry and supersymmetric Gaussian fields. Reviewer: Udhayakumar Ramalingam (Sathyamangalam) Cited in 1 ReviewCited in 13 Documents MSC: 60H15 Stochastic partial differential equations (aspects of stochastic analysis) 35R60 PDEs with randomness, stochastic partial differential equations 81Q60 Supersymmetry and quantum mechanics 82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics 35D30 Weak solutions to PDEs 35D35 Strong solutions to PDEs Keywords:stochastic quantization; elliptic stochastic partial differential equations; dimensional reduction; Wiener space; supersymmetry; Euclidean quantum field theory Citations:Zbl 0938.46045 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] Albeverio, S., De Vecchi, F. C. and Ugolini, S. (2017). Entropy chaos and Bose-Einstein condensation. J. Stat. Phys. 168 483-507. · Zbl 1376.82025 · doi:10.1007/s10955-017-1820-0 [2] Albeverio, S., Kawabi, H. and Röckner, M. (2012). Strong uniqueness for both Dirichlet operators and stochastic dynamics to Gibbs measures on a path space with exponential interactions. J. Funct. Anal. 262 602-638. · Zbl 1256.47027 · doi:10.1016/j.jfa.2011.09.023 [3] Albeverio, S. and Kusuoka, S. (2017). The invariant measure and the flow associated to the \(\Phi^4_3\)-quantum field model. Ann. Sc. Norm. Super. Pisa Cl. Sci. To appear. Available at arXiv:1711.07108. [4] Albeverio, S. and Röckner, M. (1991). Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms. Probab. Theory Related Fields 89 347-386. · Zbl 0725.60055 [5] Albeverio, S. and Yoshida, M. W. (2002). \(H-C^1\) maps and elliptic SPDEs with polynomial and exponential perturbations of Nelson’s Euclidean free field. J. Funct. Anal. 196 265-322. · Zbl 1015.60052 · doi:10.1016/S0022-1236(02)00008-3 [6] Aliprantis, C. D. and Border, K. C. (2006). Infinite Dimensional Analysis, 3rd ed. Springer, Berlin. A hitchhiker’s guide. · Zbl 1156.46001 [7] Arai, A. (1993). Supersymmetric extension of quantum scalar field theories. In Quantum and Non-commutative Analysis (Kyoto, 1992). Math. Phys. Stud. 16 73-90. Kluwer Academic, Dordrecht. · Zbl 0859.58003 [8] Baez, J. C., Segal, I. E. and Zhou, Z.-F. (1992). Introduction to Algebraic and Constructive Quantum Field Theory. Princeton Series in Physics. Princeton Univ. Press, Princeton, NJ. · Zbl 0760.46061 [9] Bahouri, H., Chemin, J.-Y. and Danchin, R. (2011). Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 343. Springer, Heidelberg. · Zbl 1227.35004 [10] Benfatto, G., Gallavotti, G. and Nicolò, F. (1980). Elliptic equations and Gaussian processes. J. Funct. Anal. 36 343-400. · Zbl 0446.60035 · doi:10.1016/0022-1236(80)90094-4 [11] Berger, M. S. (1977). Nonlinearity and Functional Analysis. Academic Press, New York-London. Lectures on nonlinear problems in mathematical analysis, Pure and Applied Mathematics. · Zbl 0368.47001 [12] Borkar, V. S., Chari, R. T. and Mitter, S. K. (1988). Stochastic quantization of field theory in finite and infinite volume. J. Funct. Anal. 81 184-206. · Zbl 0657.60084 · doi:10.1016/0022-1236(88)90117-6 [13] Brydges, D. C. and Imbrie, J. Z. (2003). Branched polymers and dimensional reduction. Ann. of Math. (2) 158 1019-1039. · Zbl 1140.82314 · doi:10.4007/annals.2003.158.1019 [14] Brydges, D. C. and Imbrie, J. Z. (2003). Dimensional reduction formulas for branched polymer correlation functions. J. Stat. Phys. 110 503-518. · Zbl 1035.82017 · doi:10.1023/A:1022143331697 [15] Caianiello, E. R. (1973). Combinatorics and Renormalization in Quantum Field Theory. W. A. Benjamin, Inc., Reading, MA-London-Amsterdam. Frontiers in Physics. [16] Caracciolo, S., Sokal, A. D. and Sportiello, A. (2013). Algebraic/combinatorial proofs of Cayley-type identities for derivatives of determinants and Pfaffians. Adv. in Appl. Math. 50 474-594. · Zbl 1277.05012 · doi:10.1016/j.aam.2012.12.001 [17] Constantinescu, F. and de Groote, H. F. (1994). Geometrische und Algebraische Methoden der Physik: Supermannigfaltigkeiten und Virasoro-Algebren. Teubner Studienbücher Mathematik. [Teubner Mathematical Textbooks]. B. G. Teubner, Stuttgart. · Zbl 0815.58001 [18] Da Prato, G. (2004). Kolmogorov Equations for Stochastic PDEs. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser, Basel. · Zbl 1066.60061 [19] Da Prato, G. and Debussche, A. (2003). Strong solutions to the stochastic quantization equations. Ann. Probab. 31 1900-1916. · Zbl 1071.81070 · doi:10.1214/aop/1068646370 [20] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44. Cambridge Univ. Press, Cambridge. · Zbl 0761.60052 [21] Damgaard, P. H. and Hüffel, H. (1987). Stochastic quantization. Phys. Rep. 152 227-398. [22] Damgaard, P. H. and Hüffel, H. (1988). Stochastic Quantization. World Scientific. · Zbl 0717.60004 [23] de Goursac, A. (2015). Noncommutative supergeometry and quantum supergroups. Vol. 597, p. 012028. Available at arXiv:1501.06316. · Zbl 1326.46056 · doi:10.2140/pjm.2015.273.169 [24] DeWitt, B. (1992). Supermanifolds, 2nd ed. Cambridge Monographs on Mathematical Physics. Cambridge Univ. Press, Cambridge. · Zbl 0874.53055 [25] Evans, L. C. (1998). Partial Differential Equations. Graduate Studies in Mathematics 19. Amer. Math. Soc., Providence, RI. [26] Fetter, A. L. and Walecka, J. D. (2012). Quantum Theory of Many-Particle Systems. Dover Books on Physics. Dover, New York. [27] Gilbarg, D. and Trudinger, N. S. (2001). Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin. Reprint of the 1998 edition. · Zbl 1042.35002 [28] Glimm, J. and Jaffe, A. (1987). Quantum Physics, 2nd ed. Springer, New York. A functional integral point of view. · Zbl 0461.46051 [29] Gross, L. (1967). Abstract Wiener spaces. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1 31-42. Univ. California Press, Berkeley, CA. · Zbl 0187.40903 [30] Gubinelli, M. and Hofmanová, M. (2019). Global solutions to elliptic and parabolic \(\Phi^4\) models in Euclidean space. Comm. Math. Phys. 368 1201-1266. · Zbl 1420.35481 [31] Hairer, M. and Iberti, M. (2018). Tightness of the Ising-Kac model on the two-dimensional torus. J. Stat. Phys. 171 632-655. · Zbl 1395.82134 · doi:10.1007/s10955-018-2033-x [32] Hairer, M. and Matetski, K. (2018). Discretisations of rough stochastic PDEs. Ann. Probab. 46 1651-1709. · Zbl 1406.60094 · doi:10.1214/17-AOP1212 [33] Helmuth, T. (2016). Dimensional reduction for generalized continuum polymers. J. Stat. Phys. 165 24-43. · Zbl 1353.82084 · doi:10.1007/s10955-016-1597-6 [34] Imry, Y. and Ma, S.-K. (1975). Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett. 35 1399-1401. [35] Iwata, K. (1987). An infinite-dimensional stochastic differential equation with state space \(C(\mathbf{R})\). Probab. Theory Related Fields 74 141-159. · Zbl 0587.60044 [36] Jona-Lasinio, G. and Mitter, P. K. (1985). On the stochastic quantization of field theory. Comm. Math. Phys. 101 409-436. · Zbl 0588.60054 · doi:10.1007/BF01216097 [37] Khasminskii, R. and Milstein, G. N. (2012). Stochastic Stability of Differential Equations, 2nd ed. Stochastic Modelling and Applied Probability 66. Springer, Heidelberg. [38] Klein, A. (1985). Supersymmetry and a two-dimensional reduction in random phenomena. In Quantum Probability and Applications, II (Heidelberg, 1984). Lecture Notes in Math. 1136 306-317. Springer, Berlin. [39] Klein, A., Landau, L. J. and Perez, J. F. (1984). Supersymmetry and the Parisi-Sourlas dimensional reduction: A rigorous proof. Comm. Math. Phys. 94 459-482. · Zbl 0546.60066 · doi:10.1007/BF01403882 [40] Klein, A. and Perez, J. F. (1983). Supersymmetry and dimensional reduction: A nonperturbative proof. Phys. Lett. B 125 473-475. [41] Klein, A. and Perez, J. F. (1985). On the density of states for random potentials in the presence of a uniform magnetic field. Nuclear Phys. B 251 199-211. [42] Krylov, N. V., Röckner, M. and Zabczyk, J. (1999). Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions: Lectures. Lecture Notes in Math. 1715. Springer, Berlin. [43] Morato, L. M. and Ugolini, S. (2011). Stochastic description of a Bose-Einstein condensate. Ann. Henri Poincaré 12 1601-1612. · Zbl 1241.82038 · doi:10.1007/s00023-011-0116-1 [44] Mourrat, J.-C. and Weber, H. (2017). Global well-posedness of the dynamic \(\Phi^4\) model in the plane. Ann. Probab. 45 2398-2476. · Zbl 1381.60098 · doi:10.1214/16-AOP1116 [45] Nelson, E. (1966). Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev. 150 1079-1085. [46] Nelson, E. (1967). Dynamical Theories of Brownian Motion. Princeton Univ. Press, Princeton, NJ. · Zbl 0165.58502 [47] Nelson, E. (1973). The free Markoff field. J. Funct. Anal. 12 211-227. · Zbl 0273.60079 · doi:10.1016/0022-1236(73)90025-6 [48] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Probability and Its Applications (New York). Springer, Berlin. · Zbl 1099.60003 [49] Parisi, G. and Sourlas, N. (1979). Random magnetic fields, supersymmetry, and negative dimensions. Phys. Rev. Lett. 43 744-745. [50] Parisi, G. and Sourlas, N. (1982). Supersymmetric field theories and stochastic differential equations. Nuclear Phys. B 206 321-332. · Zbl 0968.81547 · doi:10.1016/0550-3213(82)90538-7 [51] Parisi, G. and Wu, Y. S. (1981). Perturbation theory without gauge fixing. Sci. Sin. 24 483-496. · Zbl 1480.81051 [52] Rogers, A. (2007). Supermanifolds: Theory and Applications. World Scientific, Singapore; Hackensack, NJ. · Zbl 1135.58004 [53] Rudin, W. (1973). Functional Analysis. McGraw-Hill, New York. McGraw-Hill Series in Higher Mathematics. · Zbl 0253.46001 [54] Schwarz, A. and Zaboronsky, O. (1997). Supersymmetry and localization. Comm. Math. Phys. 183 463-476. · Zbl 0873.58003 · doi:10.1007/BF02506415 [55] Simon, B. (1974). The \(P(\phi )_2\) Euclidean (Quantum) Field Theory. Princeton Univ. Press, Princeton, NJ. Princeton Series in Physics. · Zbl 1175.81146 [56] Simon, B. (2005). Trace Ideals and Their Applications, 2nd ed. Mathematical Surveys and Monographs 120. Amer. Math. Soc., Providence, RI. · Zbl 1074.47001 [57] Stannat, W. (2011). Stochastic partial differential equations: Kolmogorov operators and invariant measures. Jahresber. Dtsch. Math.-Ver. 113 81-109. · Zbl 1221.60093 · doi:10.1365/s13291-011-0016-9 [58] Triebel, H. (1983). Theory of Function Spaces. Monographs in Mathematics 78. Birkhäuser, Basel. · Zbl 0546.46028 [59] Üstünel, A. S. and Zakai, M. (2000). Transformation of Measure on Wiener Space. Springer Monographs in Mathematics. Springer, Berlin. · Zbl 0974.46044 [60] van der Hoeven, J. (2003). Majorants for formal power series. Citeseer. [61] Wegner, F. (2016). Supermathematics and Its Applications in Statistical Physics. Lecture Notes in Physics 920. Springer, Heidelberg. Grassmann variables and the method of supersymmetry. · Zbl 1345.81003 [62] Young, A. P. (1977). On the lowering of dimensionality in phase transitions with random fields. J. Phys. C, Solid State Phys. 10 L257-L256. [63] Zinn-Justin, J. · Zbl 0865.00014 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.