zbMATH — the first resource for mathematics

Near-critical spanning forests and renormalization. (English) Zbl 07224966
Summary: We study random two-dimensional spanning forests in the plane that can be viewed both in the discrete case and in their appropriately taken scaling limits as a uniformly chosen spanning tree with some Poissonian deletion of edges or points. We show how to relate these scaling limits to a stationary distribution of a natural coalescent-type Markov process on a state space of abstract graphs with real-valued edge weights. This Markov process can be interpreted as a renormalization flow.
This provides a model for which one can rigorously implement the formalism proposed by the third author in order to relate the law of the scaling limit of a critical model to a stationary distribution of such a renormalization/Markov process. When starting from any two-dimensional lattice with constant edge weights, the Markov process does indeed converge in law to this stationary distribution that corresponds to a scaling limit of UST with Poissonian deletions.
The results of this paper heavily build on the convergence in distribution of branches of the UST to \(\text{SLE}_2 \) (a result by Lawler, Schramm and Werner) as well as on the convergence of the suitably renormalized length of the loop-erased random walk to the “natural parametrization” of the \(\text{SLE}_2 \) (a recent result by Lawler and Viklund).
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J67 Stochastic (Schramm-)Loewner evolution (SLE)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B28 Renormalization group methods in equilibrium statistical mechanics
Full Text: DOI Euclid
[1] Aizenman, M., Burchard, A., Newman, C. M. and Wilson, D. B. (1999). Scaling limits for minimal and random spanning trees in two dimensions. Random Structures Algorithms 15 319-367. · Zbl 0939.60031
[2] Alberts, T., Kozdron, M. J. and Masson, R. (2013). Some partial results on the convergence of loop-erased random walk to \(\text{SLE}(2)\) in the natural parametrization. J. Stat. Phys. 153 119-141. · Zbl 1278.82026
[3] Barlow, M. T. (2016). Loop erased walks and uniform spanning trees. In Discrete Geometric Analysis. MSJ Mem. 34 1-32. Math. Soc. Japan, Tokyo. · Zbl 1343.05139
[4] Beffara, V. (2008). The dimension of the SLE curves. Ann. Probab. 36 1421-1452. · Zbl 1165.60007
[5] Beneš, C., Lawler, G. F. and Viklund, F. (2016). Scaling limit of the loop-erased random walk Green’s function. Probab. Theory Related Fields 166 271-319. · Zbl 1362.82026
[6] Benjamini, I., Lyons, R., Peres, Y. and Schramm, O. (2001). Uniform spanning forests. Ann. Probab. 29 1-65. · Zbl 1016.60009
[7] Chelkak, D. (2016). Robust discrete complex analysis: A toolbox. Ann. Probab. 44 628-683. · Zbl 1347.60050
[8] Chelkak, D. and Smirnov, S. (2011). Discrete complex analysis on isoradial graphs. Adv. Math. 228 1590-1630. · Zbl 1227.31011
[9] Garban, C., Pete, G. and Schramm, O. (2013). Pivotal, cluster, and interface measures for critical planar percolation. J. Amer. Math. Soc. 26 939-1024. · Zbl 1276.60111
[10] Garban, C., Pete, G. and Schramm, O. (2018). The scaling limits of near-critical and dynamical percolation. J. Eur. Math. Soc. (JEMS) 20 1195-1268. · Zbl 1392.60078
[11] Garban, C., Pete, G. and Schramm, O. (2018). The scaling limits of the minimal spanning tree and invasion percolation in the plane. Ann. Probab. 46 3501-3557. · Zbl 1426.60117
[12] Grimmett, G. (2006). The Random Cluster Model. Springer, Berlin. · Zbl 1122.60087
[13] Kenyon, R. (2000). The asymptotic determinant of the discrete Laplacian. Acta Math. 185 239-286. · Zbl 0982.05013
[14] Kozma, G. (2007). The scaling limit of loop-erased random walk in three dimensions. Acta Math. 199 29-152. · Zbl 1144.60060
[15] Lawler, G. F. (1993). A discrete analogue of a theorem of Makarov. Combin. Probab. Comput. 2 181-199. · Zbl 0799.60062
[16] Lawler, G. F. and Limic, V. (2010). Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics 123. Cambridge Univ. Press, Cambridge. · Zbl 1210.60002
[17] Lawler, G. F. and Rezaei, M. A. (2015). Minkowski content and natural parameterization for the Schramm-Loewner evolution. Ann. Probab. 43 1082-1120. · Zbl 1331.60165
[18] Lawler, G. F., Schramm, O. and Werner, W. (2004). Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32 939-995. · Zbl 1126.82011
[19] Lawler, G. F. and Trujillo Ferreras, J. A. (2007). Random walk loop soup. Trans. Amer. Math. Soc. 359 767-787. · Zbl 1120.60037
[20] Lawler, G. F. and Viklund, F. (2016). Convergence of loop-erased random walk in the natural parametrization. Preprint. · Zbl 1362.82026
[21] Lawler, G. F. and Viklund, F. (2017). Convergence of radial loop-erased random walk in the natural parametrization. Preprint.
[22] Lawler, G. F. and Werner, W. (2004). The Brownian loop soup. Probab. Theory Related Fields 128 565-588. · Zbl 1049.60072
[23] Lyons, R. and Peres, Y. (2016). Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics 42. Cambridge Univ. Press, New York.
[24] Masson, R. (2009). The growth exponent for planar loop-erased random walk. Electron. J. Probab. 14 1012-1073. · Zbl 1191.60061
[25] Schramm, O. (2000). Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118 221-288. · Zbl 0968.60093
[26] Schramm, O. and Smirnov, S. (2011). On the scaling limits of planar percolation. Ann. Probab. 39 1768-1814. · Zbl 1231.60116
[27] Smirnov, S. (2010). Discrete complex analysis and probability. In Proceedings of the International Congress of Mathematicians. Volume I 595-621. Hindustan Book Agency, New Delhi. · Zbl 1251.30049
[28] Werner, W. (2016). On the spatial Markov property of soups of unoriented and oriented loops. In Séminaire de Probabilités XLVIII. Lecture Notes in Math. 2168 481-503. Springer, Cham. · Zbl 1370.60192
[29] Werner, W. (2017). A simple renormalization flow for FK-percolation models. In Geometry, Analysis and Probability, in honor of Jean-Michel Bismut. Progr. Math. 310 263-277. Birkhäuser/Springer, Cham.
[30] Werner, W. and Powell, E. (2018). Lectures Notes on the Gaussian Free Field. Topics Course at ETH, Zurich.
[31] Wilson, D. B. (1996). Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996) 296-303. ACM, New York. · Zbl 0946.60070
[32] Zinn-Justin, J. · Zbl 1256.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.