×

zbMATH — the first resource for mathematics

An algorithm for computing Grothendieck local residues. II: General case. (English) Zbl 1457.32006
Summary: Grothendieck local residue is considered in the context of symbolic computation. An effective method based on the theory of holonomic \(D\)-modules is proposed for computing Grothendieck local residues. The key is the notion of Noether operator associated to a local cohomology class. The resulting algorithm and an implementation are described with illustrations.
For Part I, see [the authors, ibid. 13, No. 1–2, 205–216 (2019; Zbl 07095839)].
MSC:
32A27 Residues for several complex variables
13N10 Commutative rings of differential operators and their modules
32C38 Sheaves of differential operators and their modules, \(D\)-modules
Software:
Risa/Asir
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ehrenpreis, L., Fourier Analysis in Several Complex Variables (1970), Hoboken: Wiley, Hoboken · Zbl 0195.10401
[2] Gianni, P.; Trager, B.; Zacharias, G., Gröbner bases and primary decomposition of polynomial ideals, J. Symb. Comput., 6, 149-167 (1988) · Zbl 0667.13008
[3] Hartshorne, R., Residues and Duality (1966), Berlin: Springer, Berlin
[4] Hörmander, L., An Introduction to Complex Analysis in Several Variables (1990), Amsterdam: North-Holland, Amsterdam
[5] Kashiwara, M., On the maximally overdetermined system of linear differential equations. I, Publ. Res. Inst. Math. Sci., 10, 563-579 (1975) · Zbl 0313.58019
[6] Kashiwara, M., On the holonomic systems of linear differential equations. II, Invent. Math., 49, 121-135 (1978) · Zbl 0401.32005
[7] Kashiwara, M., On holonomic systems of micro-differential equations. III—Systems with regular singularities, Publ. Res. Inst. Math. Sci., 17, 813-979 (1981) · Zbl 0505.58033
[8] Noro, M.: New algorithms for computing primary decomposition of polynomial ideals. In: Mathematical Software—ICMS 2010. Lecture Notes in Computer Science 6327, pp. 233-244. Springer, Berlin (2010) · Zbl 1229.13003
[9] Noro, M. et al.: Risa/Asir a computer algebra system, 1994-2019. http://www.math.kobe-u.ac.jp/Asir/ · Zbl 1027.68152
[10] Oaku, T., Algorithms for the \(b\)-functions, restrictions, and algebraic local cohomology groups of \(D\)-modules, Adv. Appl. Math., 19, 61-105 (1997) · Zbl 0938.32005
[11] Oaku, T.; Takayama, N., Algorithms for \(D\)-modules—restriction, tensor product, localization, and local cohomology groups, J. Pure Appl. Algebra, 156, 267-308 (2001) · Zbl 0983.13008
[12] Ohara, K.; Tajima, S., An algorithm for computing Grothendieck local residues I: shape basis case, Math. Comput. Sci., 13, 205-216 (2019) · Zbl 07095839
[13] Palamodev, VP, Linear Differential Operators with Constant Coefficients (1970), Berlin: Springer, Berlin
[14] Tajima, S.: On Noether differential operators attached to a zero-dimensional primary ideal—a shape basis case—. In: Finite or Infinite Dimensional Complex Analysis and Applications, pp. 357-366. Kyushu Univ. Press, Fukuoka (2005) · Zbl 1140.32302
[15] Tajima, S., Noether differential operators and Grothendieck local residues, RIMS Kôkyûroku, 1431, 123-136 (2005)
[16] Tajima, S.; Son, LH; Tutschke, W.; Jain, S., An algorithm for computing exponential polynomial solutions of constant coefficients holonomic PDE’s—generic case—, Methods of Complex and Clifford Analysis, 335-344 (2006), Delhi: SAS International Publ, Delhi · Zbl 1107.35034
[17] Tajima, S.; Oaku, T.; Nakamura, Y., Multidimensional local residues and holonomic \(D\)-modules, RIMS Kôkyûroku, 1033, 59-70 (1998) · Zbl 0944.32008
[18] Tajima, S.; Nakamura, Y., Computational aspects of Grothendieck local residues, Séminaires et Congrès, 10, 287-305 (2005) · Zbl 1089.32002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.