Maffucci, Riccardo W. Restriction of 3D arithmetic Laplace eigenfunctions to a plane. (English) Zbl 1457.60073 Electron. J. Probab. 25, Paper No. 60, 17 p. (2020). Summary: We consider a random Gaussian ensemble of Laplace eigenfunctions on the 3D torus, and investigate the 1-dimensional Hausdorff measure (‘length’) of nodal intersections against a smooth 2-dimensional toral sub-manifold (‘surface’). A prior result of ours prescribed the expected length, universally proportional to the area of the reference surface, times the wavenumber, independent of the geometry.In this paper, for surfaces contained in a plane, we give an upper bound for the nodal intersection length variance, depending on the arithmetic properties of the plane. The bound is established via estimates on the number of lattice points in specific regions of the sphere. MSC: 60G60 Random fields 11P21 Lattice points in specified regions 60G15 Gaussian processes 58J50 Spectral problems; spectral geometry; scattering theory on manifolds Keywords:nodal intersections; arithmetic random waves; lattice points on spheres; Gaussian random fields; Kac-Rice formulas PDF BibTeX XML Cite \textit{R. W. Maffucci}, Electron. J. Probab. 25, Paper No. 60, 17 p. (2020; Zbl 1457.60073) Full Text: DOI arXiv Euclid References: [1] Jean-Marc Azaïs, José R. León, and Mario Wschebor, Rice formulae and Gaussian waves, Bernoulli 17 (2011), no. 1, 170-193. [2] Jean-Marc Azaïs and Mario Wschebor, Level sets and extrema of random processes and fields, John Wiley & Sons, Inc., Hoboken, NJ, 2009. · Zbl 1168.60002 [3] Dmitry Beliaev and Riccardo W. Maffucci, Coupling of stationary fields with application to arithmetic waves, arXiv preprint arXiv:1912.09470 (2019). [4] Jacques Benatar and Riccardo W. Maffucci, Random waves on \(\mathbb{T}^3 \): Nodal area variance and lattice point correlations, International Mathematics Research Notices 2019, no. 10, 3032-3075. · Zbl 1443.11205 [5] Michael V. Berry, Regular and irregular semiclassical wavefunctions, Journal of Physics A: Mathematical and General 10 (1977), no. 12, 2083. · Zbl 0377.70014 [6] Michael V. Berry, Statistics of nodal lines and points in chaotic quantum billiards: perimeter corrections, fluctuations, curvature, Journal of Physics A: Mathematical and General 35 (2002), no. 13, 3025. · Zbl 1044.81047 [7] Eugene Bogomolny and Charles Schmit, Random wavefunctions and percolation, Journal of Physics A: Mathematical and Theoretical 40 (2007), no. 47, 14033. · Zbl 1177.81047 [8] Jean Bourgain and Zeév Rudnick, On the nodal sets of toral eigenfunctions, Invent. Math. 185 (2011), no. 1, 199-237. · Zbl 1223.58025 [9] Jean Bourgain and Zeév Rudnick, Restriction of toral eigenfunctions to hypersurfaces and nodal sets, Geom. Funct. Anal. 22 (2012), no. 4, 878-937. · Zbl 1276.53047 [10] Jean Bourgain, Zeév Rudnick, and Peter Sarnak, Spatial statistics for lattice points on the sphere I: individual results, Bulletin of the Iranian Mathematical Society 43 (2017), no. 4 (Special Issue), 361-386. · Zbl 1464.11076 [11] Jean Bourgain, Peter Sarnak, and Zeév Rudnick, Local statistics of lattice points on the sphere, Modern Trends in Constructive Function Theory, Contemp. Math 661 (2012), 269-282. · Zbl 1394.11059 [12] Valentina Cammarota, Nodal area distribution for arithmetic random waves, Transactions of the American Mathematical Society (2019). · Zbl 1478.60153 [13] Valentina Cammarota, Domenico Marinucci, and Igor Wigman, On the distribution of the critical values of random spherical harmonics, The Journal of Geometric Analysis 26 (2016), no. 4, 3252-3324. · Zbl 1353.60020 [14] Yaiza Canzani and Boris Hanin, Local universality for zeros and critical points of monochromatic random waves, arXiv preprint arXiv:1610.09438 (2016). · Zbl 1334.35179 [15] Yaiza Canzani and John A. Toth, Nodal sets of Schrödinger eigenfunctions in forbidden regions, Annales Henri Poincaré 17 (2016), no. 11, 3063-3087. · Zbl 1352.81029 [16] Shiu-Yuen Cheng, Eigenfunctions and nodal sets, Commentarii Mathematici Helvetici 51 (1976), no. 1, 43-55. · Zbl 0334.35022 [17] Federico Dalmao, Anne Estrade, and José León, On 3-dimensional Berry’s model, arXiv preprint arXiv:1912.09774 (2019). [18] Manfredo P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976, Translated from the Portuguese. · Zbl 0326.53001 [19] William Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Inventiones mathematicae 92 (1988), no. 1, 73-90. · Zbl 0628.10029 [20] William Duke and Rainer Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids, Inventiones Mathematicae 99 (1990), no. 1, 49-57. · Zbl 0692.10020 [21] Layan El-Hajj and John A. Toth, Intersection bounds for nodal sets of planar Neumann eigenfunctions with interior analytic curves, Journal of Differential Geometry 100 (2015), no. 1, 1-53. · Zbl 1321.58030 [22] Elena Petrovna Golubeva and Oleg Mstislavovich Fomenko, Asymptotic distribution of integral points on the three-dimensional sphere, Zapiski Nauchnykh Seminarov POMI 160 (1987), 54-71. [23] Vojtěch Jarník, Über die Gitterpunkte auf konvexen Kurven, Math. Z. 24 (1926), no. 1, 500-518. · JFM 51.0153.01 [24] Manjunath Krishnapur, Pär Kurlberg, and Igor Wigman, Nodal length fluctuations for arithmetic random waves, Ann. of Math. (2) 177 (2013), no. 2, 699-737. · Zbl 1314.60101 [25] Thomas Letendre, Expected volume and Euler characteristic of random submanifolds, Journal of Functional Analysis 270 (2016), no. 8, 3047-3110. · Zbl 1349.58007 [26] Thomas Letendre, Variance of the volume of random real algebraic submanifolds, Transactions of the American Mathematical Society (2017). · Zbl 1412.53079 [27] Michael Selwyn Longuet-Higgins, The statistical analysis of a random, moving surface, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 249 (1957), no. 966, 321-387. · Zbl 0077.12707 [28] Riccardo W. Maffucci, Nodal intersections for random waves against a segment on the 3-dimensional torus, Journal of Functional Analysis 272 (2017), no. 12, 5218-5254. · Zbl 1390.11120 [29] Riccardo W. Maffucci, Nodal intersections of random eigenfunctions against a segment on the 2-dimensional torus, Monatshefte für Mathematik 183 (2017), no. 2, 311-328. · Zbl 1432.11134 [30] Riccardo W. Maffucci, Nodal intersections for arithmetic random waves against a surface, Annales Henri Poincaré 20 (2019), no. 11, 3651-3691. · Zbl 1441.58009 [31] Domenico Marinucci, Giovanni Peccati, Maurizia Rossi, and Igor Wigman, Non-universality of nodal length distribution for arithmetic random waves, Geometric and Functional Analysis 26 (2016), no. 3, 926-960. · Zbl 1347.60013 [32] Ivan Nourdin and Giovanni Peccati, Normal approximations with malliavin calculus: from stein’s method to universality, vol. 192, Cambridge University Press, 2012. · Zbl 1266.60001 [33] Ivan Nourdin, Giovanni Peccati, and Maurizia Rossi, Nodal statistics of planar random waves, Communications in Mathematical Physics 369 (2019), no. 1, 99-151. · Zbl 1431.60025 [34] Ferenc Oravecz, Zeév Rudnick, and Igor Wigman, The Leray measure of nodal sets for random eigenfunctions on the torus, Annales de l’Institut Fourier 58 (2008), no. 1, 299-335. · Zbl 1153.35058 [35] Stephen O. Rice, Mathematical analysis of random noise, Bell System Technical Journal 23 (1944), no. 3, 282-332. · Zbl 0063.06485 [36] Maurizia Rossi and Igor Wigman, Asymptotic distribution of nodal intersections for arithmetic random waves, Nonlinearity 31 (2018), no. 10, 4472. · Zbl 1394.60053 [37] Zeév Rudnick and Igor Wigman, On the volume of nodal sets for eigenfunctions of the Laplacian on the torus, Ann. Henri Poincaré 9 (2008), no. 1, 109-130. · Zbl 1142.60029 [38] Zeév Rudnick and Igor Wigman, Nodal intersections for random eigenfunctions on the torus, Amer. J. Math. 138 (2016), no. 6, 1605-1644. · Zbl 1373.58017 [39] Zeév Rudnick, Igor Wigman, and Nadav Yesha, Nodal intersections for random waves on the 3-dimensional torus, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2455-2484. · Zbl 1360.60081 [40] Peter Swerling, Statistical properties of the contours of random surfaces, IRE Transactions on Information Theory 8 (1962), no. 4, 315-321. · Zbl 0114.08701 [41] John A. Toth and Steve Zelditch, Counting nodal lines which touch the boundary of an analytic domain, J. Differential Geom. 81 (2009), no. 3, 649-686. · Zbl 1180.35395 [42] Igor Wigman, On the distribution of the nodal sets of random spherical harmonics, Journal of mathematical physics 50 (2009), no. 1, 013521. · Zbl 1200.58021 [43] Igor Wigman, Fluctuations of the nodal length of random spherical harmonics, Communications in Mathematical Physics 298 (2010), no. 3, 787. · Zbl 1213.33019 [44] Nadav Yesha, Eigenfunction statistics for a point scatterer on a three-dimensional torus, Annales Henri Poincaré 14 (2013), no. · Zbl 1276.81063 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.