×

An augmented Lagrangian algorithm for multi-objective optimization. (English) Zbl 1447.90055

Summary: In this paper, we propose an adaptation of the classical augmented Lagrangian method for dealing with multi-objective optimization problems. Specifically, after a brief review of the literature, we give a suitable definition of the augmented Lagrangian for equality and inequality constrained multi-objective problems. We exploit this object in a general computational scheme that is proved to converge, under mild assumptions, to weak Pareto points of such problems. We then provide a modified version of the algorithm which is more suited for practical implementations, proving again convergence properties under reasonable hypotheses. Finally, computational experiments show that the proposed methods not only do work in practice, but are also competitive with respect to state-of-the-art methods.

MSC:

90C29 Multi-objective and goal programming

Software:

ACRS; MODIR; OLAF; DFMO; ALGENCAN
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bertsekas, DP, Nonlinear programming, J. Oper. Res. Soc., 48, 3, 334-334 (1997)
[2] Binh, T.T., Mobes, U. Korn.: A multiobjective evolution strategy for constrained optimization problems. In: The Third International Conference on Genetic Algorithms (Mendel 97), vol. 25, p. 27 (1997)
[3] Birgin, EG; Martinez, JM, Practical Augmented Lagrangian Methods for Constrained Optimization (2014), Philadelphia: SIAM, Philadelphia
[4] Bonnel, H.; Iusem, AN; Svaiter, BF, Proximal methods in vector optimization, SIAM J. Optim., 15, 4, 953-970 (2005) · Zbl 1093.90054
[5] Campana, EF; Diez, M.; Liuzzi, G.; Lucidi, S.; Pellegrini, R.; Piccialli, V.; Rinaldi, F.; Serani, A., A multi-objective direct algorithm for ship hull optimization, Comput. Optim. Appl., 71, 1, 53-72 (2018) · Zbl 1405.90114
[6] Carrizo, GA; Lotito, PA; Maciel, MC, Trust region globalization strategy for the nonconvex unconstrained multiobjective optimization problem, Math. Program., 159, 1-2, 339-369 (2016) · Zbl 1345.90081
[7] Carrizosa, E.; Frenk, JBG, Dominating sets for convex functions with some applications, J. Optim. Theory Appl., 96, 2, 281-295 (1998) · Zbl 0905.90134
[8] Costa, L.A., Espírito-Santo, I.A., Oliveira, P.: A scalarized augmented Lagrangian algorithm (SCAL) for multi-objective optimization constrained problems. In: ICORES, pp. 335-340 (2018)
[9] Custódio, AL; Madeira, JA; Vaz, AIF; Vicente, LN, Direct multisearch for multiobjective optimization, SIAM J. Optim., 21, 3, 1109-1140 (2011) · Zbl 1230.90167
[10] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: International Conference on Parallel Problem Solving from Nature, pp. 849-858. Springer (2000)
[11] Dolan, ED; Moré, JJ, Benchmarking optimization software with performance profiles, Math. Program., 91, 2, 201-213 (2002) · Zbl 1049.90004
[12] Drummond, LG; Iusem, AN, A projected gradient method for vector optimization problems, Comput. Optim. Appl., 28, 1, 5-29 (2004) · Zbl 1056.90126
[13] Eichfelder, G., Adaptive Scalarization Methods in Multiobjective Optimization (2008), Berlin: Springer, Berlin · Zbl 1145.90001
[14] El Maghri, M.; Elboulqe, Y., Reduced Jacobian method, J. Optim. Theory Appl., 179, 3, 917-943 (2018) · Zbl 1402.90171
[15] El Moudden, M.; El Ghali, A., A new reduced gradient method for solving linearly constrained multiobjective optimization problems, Comput. Optim. Appl., 71, 3, 719-741 (2018) · Zbl 1412.90134
[16] Fazzio, N.S.: Teoría y métodos para problemas de optimización multiobjetivo. Ph.D. Thesis, Universidad Nacional de La Plata (2018)
[17] Fliege, J., OLAF—a general modeling system to evaluate and optimize the location of an air polluting facility, OR-Spektrum, 23, 1, 117-136 (2001) · Zbl 1020.90036
[18] Fliege, J., Gap-free computation of Pareto-points by quadratic scalarizations, Math. Methods Oper. Res., 59, 1, 69-89 (2004) · Zbl 1131.90054
[19] Fliege, J.; Drummond, LG; Svaiter, BF, Newton’s method for multiobjective optimization, SIAM J. Optim., 20, 2, 602-626 (2009) · Zbl 1195.90078
[20] Fliege, J.; Svaiter, BF, Steepest descent methods for multicriteria optimization, Math. Methods Oper. Res., 51, 3, 479-494 (2000) · Zbl 1054.90067
[21] Fliege, J.; Vaz, AIF, A method for constrained multiobjective optimization based on SQP techniques, SIAM J. Optim., 26, 4, 2091-2119 (2016) · Zbl 1349.90735
[22] Fu, Y.; Diwekar, UM, An efficient sampling approach to multiobjective optimization, Ann. Oper. Res., 132, 1-4, 109-134 (2004) · Zbl 1090.90171
[23] Fukuda, EH; Drummond, LG, On the convergence of the projected gradient method for vector optimization, Optimization, 60, 8-9, 1009-1021 (2011) · Zbl 1231.90331
[24] Fukuda, EH; Drummond, LG, Inexact projected gradient method for vector optimization, Comput. Optim. Appl., 54, 3, 473-493 (2013) · Zbl 1295.90069
[25] Fukuda, EH; Drummond, LG; Raupp, FM, An external penalty-type method for multicriteria, Top, 24, 2, 493-513 (2016) · Zbl 1368.90141
[26] Fukuda, EH; Drummond, LG; Raupp, FM, A barrier-type method for multiobjective optimization, Optimization (2019)
[27] Gass, S.; Saaty, T., The computational algorithm for the parametric objective function, Naval Res. Logist. Q., 2, 1-2, 39-45 (1955)
[28] Geoffrion, AM, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl., 22, 3, 618-630 (1968) · Zbl 0181.22806
[29] Gravel, M.; Martel, JM; Nadeau, R.; Price, W.; Tremblay, R., A multicriterion view of optimal resource allocation in job-shop production, Eur. J. Oper. Res., 61, 1-2, 230-244 (1992)
[30] Jüschke, A.; Jahn, J.; Kirsch, A., A bicriterial optimization problem of antenna design, Comput. Optim. Appl., 7, 3, 261-276 (1997) · Zbl 0872.90112
[31] Kanzow, C.; Steck, D., An example comparing the standard and safeguarded augmented Lagrangian methods, Oper. Res. Lett., 45, 6, 598-603 (2017) · Zbl 1409.90186
[32] Kasperska, R., Ostwald, M., Rodak, M.: Bi-criteria optimization of open cross section of the thin-walled beams with flat flanges. In: PAMM: Proceedings in Applied Mathematics and Mechanics, vol. 4, pp. 614-615. Wiley Online Library (2004) · Zbl 1354.74206
[33] Konak, A.; Coit, DW; Smith, AE, Multi-objective optimization using genetic algorithms: a tutorial, Reliab. Eng. Syst. Saf., 91, 9, 992-1007 (2006)
[34] Laumanns, M.; Thiele, L.; Deb, K.; Zitzler, E., Combining convergence and diversity in evolutionary multiobjective optimization, Evol. Comput., 10, 3, 263-282 (2002)
[35] Leschine, TM; Wallenius, H.; Verdini, WA, Interactive multiobjective analysis and assimilative capacity-based ocean disposal decisions, Eur. J. Oper. Res., 56, 2, 278-289 (1992)
[36] Liuzzi, G.; Lucidi, S.; Parasiliti, F.; Villani, M., Multiobjective optimization techniques for the design of induction motors, IEEE Trans. Magn., 39, 3, 1261-1264 (2003)
[37] Liuzzi, G.; Lucidi, S.; Rinaldi, F., A derivative-free approach to constrained multiobjective nonsmooth optimization, SIAM J. Optim., 26, 4, 2744-2774 (2016) · Zbl 1358.90133
[38] Morovati, V.; Basirzadeh, H.; Pourkarimi, L., Quasi-newton methods for multiobjective optimization problems, 4OR, 16, 3, 261-294 (2018) · Zbl 1407.90300
[39] Mostaghim, S., Branke, J., Schmeck, H.: Multi-objective particle swarm optimization on computer grids. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 869-875. ACM (2007)
[40] Palermo, G., Silvano, C., Valsecchi, S., Zaccaria, V.: A system-level methodology for fast multi-objective design space exploration. In: Proceedings of the 13th ACM Great Lakes symposium on VLSI, pp. 92-95. ACM (2003)
[41] Pellegrini, R., Campana, E., Diez, M., Serani, A., Rinaldi, F., Fasano, G., Iemma, U., Liuzzi, G., Lucidi, S., Stern, F.: Application of derivative-free multi-objective algorithms to reliability-based robust design optimization of a high-speed catamaran in real ocean environment. In: Rodrigues et al.(Eds.), Engineering Optimization IV, p. 15 (2014)
[42] Povalej, Ž., Quasi-Newton’s method for multiobjective optimization, J. Comput. Appl. Math., 255, 765-777 (2014) · Zbl 1291.90316
[43] Qu, S.; Goh, M.; Chan, FT, Quasi-Newton methods for solving multiobjective optimization, Oper. Res. Lett., 39, 5, 397-399 (2011) · Zbl 1235.90139
[44] Shan, S.; Wang, GG, An efficient Pareto set identification approach for multiobjective optimization on black-box functions, J. Mech. Des., 127, 5, 866-874 (2005)
[45] Steuer, RE; Choo, E-U, An interactive weighted Tchebycheff procedure for multiple objective programming, Math. Program., 26, 3, 326-344 (1983) · Zbl 0506.90075
[46] Sun, Y.; Ng, DWK; Zhu, J.; Schober, R., Multi-objective optimization for robust power efficient and secure full-duplex wireless communication systems, IEEE Trans. Wirel. Commun., 15, 8, 5511-5526 (2016)
[47] Tanabe, H.; Fukuda, EH; Yamashita, N., Proximal gradient methods for multiobjective optimization and their applications, Comput. Optim. Appl., 72, 2, 339-361 (2019) · Zbl 1420.90065
[48] Tavana, M., A subjective assessment of alternative mission architectures for the human exploration of Mars at NASA using multicriteria decision making, Comput. Oper. Res., 31, 7, 1147-1164 (2004) · Zbl 1046.90536
[49] White, D., Epsilon-dominating solutions in mean-variance portfolio analysis, Eur. J. Oper. Res., 105, 3, 457-466 (1998) · Zbl 0960.91509
[50] White, DJ, Multiobjective programming and penalty functions, J. Optim. Theory Appl., 43, 4, 583-599 (1984) · Zbl 0517.90077
[51] Zadeh, L., Optimality and non-scalar-valued performance criteria, IEEE Trans. Autom. Control, 8, 1, 59-60 (1963)
[52] Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. Mechanical Engineering, 01 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.