×

zbMATH — the first resource for mathematics

Implementing a smooth exact penalty function for equality-constrained nonlinear optimization. (English) Zbl 1447.90063

MSC:
90C30 Nonlinear programming
65K05 Numerical mathematical programming methods
Software:
CUTEst; KNITRO; LSQR; TRON
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Arioli (2013), Generalized Golub-Kahan bidiagonalization and stopping criteria, SIAM J. Matrix Anal. Appl., 34, pp. 571-592, https://doi.org/10.1137/120866543. · Zbl 1273.65041
[2] D. P. Bertsekas (1975), Necessary and sufficient conditions for a penalty method to be exact, Math. Program., 9, pp. 87-99. · Zbl 0325.90055
[3] D. P. Bertsekas (1982), Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York. · Zbl 0572.90067
[4] \AA. Björck (1996), Numerical Methods for Least Squares Problems, SIAM, Philadelphia, https://doi.org/10.1137/1.9781611971484. · Zbl 0847.65023
[5] R. H. Byrd, J. Nocedal, and R. A. Waltz (2006), KNITRO: An integrated package for nonlinear optimization, in Large-Scale Nonlinear Optimization, G. di Pillo and M. Roma, eds., Springer-Verlag, New York, pp. 35-59. · Zbl 1108.90004
[6] R. H. Byrd, G. Lopez-Calva, and J. Nocedal (2012), A line search exact penalty method using steering rules, Math. Program., 133, pp. 39-73. · Zbl 1254.90221
[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint (2000), Trust-Region Methods, MOS-SIAM Ser. Optim. 1, SIAM, Philadelphia, https://doi.org/10.1137/1.9780898719857.
[8] R. Courant (1943), Variational methods for the solution of problems with equilibrium and variation, Bull. Amer. Math. Soc., 49, pp. 1-23. · Zbl 0063.00985
[9] J. E. Craig (1955), The N-step iteration procedures, J. Math. Phys., 34, pp. 64-73. · Zbl 0065.10901
[10] R. S. Dembo, S. C. Eisenstat, and T. Steihaug (1982), Inexact Newton methods, SIAM J. Numer. Anal., 19, pp. 400-408, https://doi.org/10.1137/0719025. · Zbl 0478.65030
[11] G. di Pillo and L. Grippo (1984), A class of continuously differentiable exact penalty function algorithms for nonlinear programming problems, in System Modelling and Optimization, E. P. Toft-Christensen, ed., Springer-Verlag, Berlin, pp. 246-256. · Zbl 0545.90085
[12] G. di Pillo and L. Grippo (1986), An exact penalty function method with global convergence properties for nonlinear programming problems, Math. Program., 36, pp. 1-18. · Zbl 0631.90061
[13] R. Estrin, D. Orban, and M. A. Saunders (2019a), LSLQ: An iterative method for linear least-squares with an error minimization property, SIAM J. Matrix Anal. Appl., 40, pp. 254-275, https://doi.org/10.1137/17M1113552. · Zbl 1451.65028
[14] R. Estrin, D. Orban, and M. A. Saunders (2019b), LNLQ: An iterative method for linear least-norm problems with an error minimization property, SIAM J. Matrix Anal. Appl., 40, pp. 1102-1124, https://doi.org/10.1137/18M1194948. · Zbl 1435.65050
[15] R. Estrin, M. P. Friedlander, D. Orban, and M. A. Saunders (2020), Implementing a smooth exact penalty function for inequality-constrained nonlinear optimization, SIAM J. Sci. Comput., 42, pp. A1836-A1859, https://doi.org/10.1137/19M1255069.
[16] R. Fletcher (1970), A class of methods for nonlinear programming with termination and convergence properties, in Integer and Nonlinear Programming, J. Abadie, ed., North-Holland, Amsterdam, pp. 157-175.
[17] R. Fletcher (1973), A class of methods for nonlinear programming: III. Rates of convergence, in Numerical Methods for Nonlinear Optimization, F. A. Lootsma, ed., Academic Press, New York.
[18] R. Fletcher (1985), An \(l_1\) penalty method for nonlinear constraints, in Numerical Optimization, 1984 (Boulder, CO, 1984), SIAM, Philadelphia, pp. 26-40.
[19] P. E. Gill, M. A. Saunders, and J. R. Shinnerl (1996), On the stability of Cholesky factorization for symmetric quasidefinite systems, SIAM J. Matrix Anal. Appl., 17, pp. 35-46, https://doi.org/10.1137/S0895479893252623. · Zbl 0878.49020
[20] G. H. Golub and V. Pereyra (1973), The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate, SIAM J. Numer. Anal., 10, pp. 413-432, collection of articles dedicated to the memory of George E. Forsythe, https://doi.org/10.1137/0710036. · Zbl 0258.65045
[21] N. I. M. Gould, D. Orban, and Ph. L. Toint (2015), CUTEst: A constrained and unconstrained testing environment with safe threads for mathematical optimization, Comput. Optim. Appl., 60, pp. 545-557, https://doi.org/10.1007/s10589-014-9687-3. · Zbl 1325.90004
[22] M. Heinkenschloss and L. N. Vicente (2001), Analysis of inexact trust-region SQP algorithms, SIAM J. Optim., 12, pp. 283-302, https://doi.org/10.1137/S1052623499361543. · Zbl 1035.90104
[23] M. R. Hestenes (1969), Multiplier and gradient methods, J. Optim. Theory Appl., 4, pp. 303-320. · Zbl 0174.20705
[24] M. R. Hestenes and E. Stiefel (1952), Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Standards, 49, pp. 409-436 (1953). · Zbl 0048.09901
[25] D. P. Kouri, M. Heinkenschloss, D. Ridzal, and B. G. van Bloemen Waanders (2014), Inexact objective function evaluations in a trust-region algorithm for PDE-constrained optimization under uncertainty, SIAM J. Sci. Comput., 36, pp. A3011-A3029, https://doi.org/10.1137/140955665. · Zbl 1312.49033
[26] C.-J. Lin and J. J. Moré (1999a), Incomplete Cholesky factorizations with limited memory, SIAM J. Sci. Comput., 21, pp. 24-45, https://doi.org/10.1137/S1064827597327334. · Zbl 0941.65033
[27] C.-J. Lin and J. J. Moré (1999b), Newton’s method for large bound-constrained optimization problems, SIAM J. Optim., 9, pp. 1100-1127, https://doi.org/10.1137/S1052623498345075. · Zbl 0957.65064
[28] N. Maratos (1978), Exact Penalty Function Algorithms for Finite Dimensional and Optimization Problems, Ph.D. thesis, Imperial College of Science and Technology, London, UK.
[29] J. L. Morales and J. Nocedal (2000), Automatic preconditioning by limited memory quasi-Newton updating, SIAM J. Optim., 10, pp. 1079-1096, https://doi.org/10.1137/S1052623497327854. · Zbl 1020.65019
[30] H. Mukai and E. Polak (1975), A quadratically convergent primal-dual algorithm with global convergence properties for solving optimization problems with equality constraints, Math. Programming, 9, pp. 336-349. · Zbl 0351.90065
[31] J. Nocedal and S. J. Wright (2006), Numerical Optimization, 2nd ed., Springer, New York. · Zbl 1104.65059
[32] D. Orban and M. Arioli (2017), Iterative Solution of Symmetric Quasi-Definite Linear Systems, SIAM Spotlights 3, SIAM, Philadelphia, https://doi.org/10.1137/1.9781611974737. · Zbl 1409.65004
[33] J. M. Ortega and W. C. Rheinboldt (2000), Iterative Solution of Nonlinear Equations in Several Variables, Classics Appl. Math. 30, SIAM, Philadelphia, https://doi.org/10.1137/1.9780898719468. · Zbl 0949.65053
[34] C. C. Paige and M. A. Saunders (1975), Solution of sparse indefinite systems of linear equations, SIAM J. Numer. Anal., 12, pp. 617-629, https://doi.org/10.1137/0712047. · Zbl 0319.65025
[35] C. C. Paige and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw., 8, pp. 43-71. · Zbl 0478.65016
[36] J. W. Pearson, M. Stoll, and A. J. Wathen (2012), Regularization-robust preconditioners for time-dependent PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 33, pp. 1126-1152, https://doi.org/10.1137/110847949. · Zbl 1263.65035
[37] T. Pietrzykowski (1969), An exact potential method for constrained maxima, SIAM J. Numer. Anal., 6, pp. 299-304, https://doi.org/10.1137/0706028. · Zbl 0181.46501
[38] M. J. D. Powell (1969), A method for nonlinear constraints in minimization problems, in Optimization, R. Fletcher, ed., Academic Press, London, New York, Chapter 19, pp. 283-298.
[39] Y. Saad (1993), A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14, pp. 461-469, https://doi.org/10.1137/0914028. · Zbl 0780.65022
[40] V. Simoncini (2012), Reduced order solution of structured linear systems arising in certain PDE-constrained optimization problems, Comput. Optim. Appl., 53, pp. 591-617. · Zbl 1266.49061
[41] T. Steihaug (1983), The conjugate gradient method and trust regions in large scale optimization, SIAM J. Numer. Anal., 20, pp. 626-637, https://doi.org/10.1137/0720042. · Zbl 0518.65042
[42] Ph. L. Toint (1981), Towards an efficient sparsity exploiting Newton method for minimization, in Sparse Matrices and Their Uses, I. S. Duff, ed., Academic Press, London, pp. 57-88. · Zbl 0463.65045
[43] R. J. Vanderbei (1995), Symmetric quasidefinite matrices, SIAM J. Optim., 5, pp. 100-113, https://doi.org/10.1137/0805005. · Zbl 0822.65017
[44] S. J. Wright (1998), Superlinear convergence of a stabilized SQP method to a degenerate solution, Comput. Optim. Appl., 11, pp. 253-275. · Zbl 0917.90279
[45] V. M. Zavala and M. Anitescu (2014), Scalable nonlinear programming via exact differentiable penalty functions and trust-region Newton methods, SIAM J. Optim., 24, pp. 528-558, https://doi.org/10.1137/120888181. · Zbl 1295.90086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.