zbMATH — the first resource for mathematics

A mathematical model for the interplay of Nosema infection and forager losses in honey bee colonies. (English) Zbl 1447.92469
Summary: We present a mathematical model (a) for the infection of a honey bee colony with Nosema ceranae. This is a system of five ordinary differential equations for the dependent variables healthy and infected worker bees in the hive, healthy and infected forager bees, and disease potential deposited in the hive. The model is then (b) extended to account for increased forager losses, e.g., caused by exposure to external stressors. The model is non-autonomous with periodic coefficient functions. Algebraic complexity prevents a rigorous mathematical analysis. Therefore, we resort to computer simulations in addition to some analytical results in the constant coefficient case. We investigate each of the two stressors (a) and (b) individually and jointly. Our results indicate that the combined effect of two stressors, both of which can be tolerated by the colony individually, might lead to colony failure, suggesting multi-factorial causes behind losses of honey bee colonies.

92D30 Epidemiology
92D25 Population dynamics (general)
34C60 Qualitative investigation and simulation of ordinary differential equation models
deSolve; diffEq; pracma
Full Text: DOI
[1] M.D. Allen and E.P. Jeffree, The influence of stored pollen and of colony size on the brood rearing of honeybees, Ann. Appl. Biol. 44(4) (1956), pp. 649-656. doi: 10.1111/j.1744-7348.1956.tb02164.x[Crossref], [Web of Science ®], [Google Scholar]
[2] L. Bailey, Honey bee pathology, Ann. Rev. Entomol. 13(1) (1968), pp. 191-212. doi: 10.1146/annurev.en.13.010168.001203[Crossref], [Web of Science ®], [Google Scholar]
[3] F. Becerra-Guzmán, E. Guzmán-Novoa, A. Correa-Benítez, and A. Zozaya-Rubio, Length of life, age at first foraging and foraging life of Africanized and European honey bee (Apis mellifera) workers, during conditions of resource abundance, J. Apicult. Res. 44(4) (2005), pp. 151-156. doi: 10.1080/00218839.2005.11101170[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[4] M.A. Becher, J.L. Osborne, P. Thorbek, P.J. Kennedy, V. Grimm, and I. Steffan-Dewenter, REVIEW: Towards a systems approach for understanding honeybee decline: A stocktaking and synthesis of existing models, J. Appl. Ecol. 50(4) (2013), pp. 868-880. doi: 10.1111/1365-2664.12112[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[5] S.N. Beshers, Z.Y. Huang, Y. Oono, and G.E. Robinson, Social inhibition and the regulation of temporal polyethism in honey bees, J. Theor. Biol. 213(3) (2001), pp. 461-479. doi: 10.1006/jtbi.2001.2427[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[6] M.I. Betti, L.M. Wahl, M. Zamir, and O. Rueppell, Effects of infection on honey bee population dynamics: A model, PloS One 9(10) (2014), p. e110237. doi: 10.1371/journal.pone.0110237[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[7] H.W. Borchers, pracma: Practical numerical math functions, R package version 1.8.8, 2015; available at http://CRAN.R-project.org/package=pracma, 2015. [Google Scholar]
[8] R. Brodschneider and K. Crailsheim, Nutrition and health in honey bees, Apidol. 41(3) (2010), pp. 278-294. doi: 10.1051/apido/2010012[Crossref], [Web of Science ®], [Google Scholar]
[9] J. Bryden, R.J. Gill, R.A.A. Mitton, N.E. Raine, V.A. A. Jansen, and D. Hodgson, Chronic sublethal stress causes bee colony failure, Ecol. Lett. 16(12) (2013), pp. 1463-1469. doi: 10.1111/ele.12188[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[10] Y. Chen, J.D. Evans, I.B. Smith, and J.S. Pettis, Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee (Apis mellifera) in the United States, J. Inverteb. Pathol. 97(2) (2008), pp. 186-188. doi: 10.1016/j.jip.2007.07.010[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[11] H.J. Eberl, M. Frederick, and P. Kevan, The importance of brood maintenance terms in simple models of the honeybee ‘Varroa destructor’ acute bee paralysis virus complex, Electron. J. Differ. Eq. CS19 (2010), pp. 85-98. [Google Scholar] · Zbl 1195.92055
[12] B. Emsen, E. Guzman-Novoa, M.M. Hamiduzzaman, L. Eccles, B. Lacey, R.A. Ruiz-Pérez, and M. Nasr, Higher prevalence and levels of Nosema ceranae than Nosema apis infections in Canadian honey bee colonies, Parasitol. Res. 115(1) (2016), pp. 175-181. doi: 10.1007/s00436-015-4733-3[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[13] D. van Engelsdorp, J. Hayes Jr., R.M. Underwood, and J.S. Pettis, A survey of honey bee colony losses in the United States, Fall 2008 to Spring 2009, J. Apicult. Res. 49(1) (2010), pp. 7-14. doi: 10.3896/IBRA.[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[14] E. Forsgren and I. Fries, Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees, Vet. Parasitol. 170(3) (2010), pp. 212-217. doi: 10.1016/j.vetpar.2010.02.010[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[15] M. Goblirsch, Z.Y. Huang, M. Spivak, and G.V. Amdam, Physiological and behavioral changes in honey bees (Apis mellifera) induced by Nosema ceranae infection, PLoS One 8(3) (2013), p. e58165. doi: 10.1371/journal.pone.0058165[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[16] Government of Canada, Canadian Climate Normals 1981-2010 Station Data. Available at http://climate.weather.gc.ca/climate_normals, Accessed 15 January 2016. [Google Scholar]
[17] P. Graystock, D. Goulson, and W.H.O. Hughes, Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species, Proc. R. Soc. B 282 (2015), p. 20151371. doi: 10.1098/rspb.2015.1371[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[18] M. Henry, M. Beguin, F. Requier, O. Rollin, J.-F. Odoux, P. Aupinel, J. Aptel, S. Tchamitchian, and A. Decourtye, A common pesticide decreases foraging success and survival in honey bees, Science 336(6079) (2012), pp. 348-350. doi: 10.1126/science.1215039[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[19] M. Higes, R. Martín-Hernández, C. Botías, E.G. Bailón, A.V. González-Porto, L. Barrios, M.J. del Nozal, J.L. Bernal,J.J. Jiménez, P.G. Palencia, and A. Meana, How natural infection by Nosema ceranae causes honeybee colony collapse, Environ. Microbiol. 10(10) (2008), pp. 2659-2669. doi: 10.1111/j.1462-2920.2008.01687.x[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[20] M. Higes, R. Martín-Hernández, E. Garrido-Bailón, P. García-Palencia, and A. Meana, Detection of infective Nosema ceranae (Microsporidia) spores in corbicular pollen of forager honeybees, J. Invertebr. Pathol. 97 (2008), pp. 76-78. doi: 10.1016/j.jip.2007.06.002[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[21] M. Higes, A. Meana, C. Bartolomé, C. Botías, and R. Martín-Hernández, Nosema ceranae (Microsporidia), a controversial 21st century honey bee pathogen, Env. Microbiol. Reports 5(1) (2013), pp. 17-29. doi: 10.1111/1758-2229.12024[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[22] L. Hogben, Handbook of Linear Algebra, CRC Press, Boca Raton, FL, 2006. [Crossref], [Google Scholar] · Zbl 1284.15001
[23] W.-F. Huang, L. Solter, K. Aronstein, and Z. Huang, Infectivity and virulence of Nosema ceranae and Nosema apis in commercially available North American honey bees, J. Inverteb. Pathol. 124 (2015), pp. 107-113. doi: 10.1016/j.jip.2014.10.006[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[24] P.G. Kevan, E. Guzman, A. Skinner, and D. van Englesdorp, Colony collapse disorder in Canada: do we have a problem? Hive Lights 20(4) (2007), pp. 14-16. [Google Scholar]
[25] D.S. Khoury, M.R. Myerscough, A.B. Barron, and J.A.R. Marshall, A quantitative model of honey bee colony population dynamics, PloS One 6(4) (2011), p. e18491. doi: 10.1371/journal.pone.0018491[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[26] D.S. Khoury, A.B. Barron, M.R. Myerscough, and A.G. Dyer, Modelling food and population dynamics in honey bee colonies, PloS One 8(5) (2013), p. e59084. doi: 10.1371/journal.pone.0059084[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[27] C.M. Kribs-Zaleta and C. Mitchell, Modeling colony collapse disorder in honeybees as a contagion, Math. Biosc. Eng. 11(6) (2014), pp. 1275-1294. doi: 10.3934/mbe.2014.11.1275[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1333.92059
[28] B. Lacey, A two year study of Nosema ceranae in Ontario, Ontario Bee J. 33(2) (2014), pp. 14-16. [Google Scholar]
[29] A.R. McLellan, Growth and decline of honeybee colonies and inter-relationships of adult bees, brood, honey and pollen, J. Appl. Ecol. 15 (1978), pp. 155-161. doi: 10.2307/2402927[Crossref], [Web of Science ®], [Google Scholar]
[30] F.E. Moeller, Nosema Disease: Its Control in Honey Bee Colonies, USDA Science and Education Administration, Vol. 1569, 1978. [Google Scholar]
[31] National Research Council (US). Committee on the Status of Pollinators in North America and National Academies Press (US), Status of Pollinators in North America, Natl. Academy Pr, 2007. [Google Scholar]
[32] S.G. Potts, S.P.M. Roberts, R. Dean, G. Marris, M.A. Brown, R. Jones, P. Neumann, and J. Settele, Declines of managed honey bees and beekeepers in Europe, J. Apicult. Res. 49(1) (2010), pp. 15-22. doi: 10.3896/IBRA.[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[33] V. Ratti, P.G. Kevan, and H.J. Eberl, A mathematical model of the honeybee-varroa destructor-acute bee paralysis virus system with seasonal effects, Bull. Math. Biol. 77(8) (2015), pp. 1493-1520. doi: 10.1007/s11538-015-0093-5[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1336.92084
[34] S.F. Sakagami and H. Fukuda, Life tables for worker honeybees, Res. Pop. Ecol. 10(2) (1968), pp. 127-139. doi: 10.1007/BF02510869[Crossref], [Google Scholar]
[35] T.D. Seeley, Honeybee Ecology: A Study of Adaptation in Social Life, Princeton University Press, Princeton, NJ, 1985. [Crossref], [Google Scholar]
[36] T.D. Seeley, The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies, Harvard University Press, Cambridge, MA, 2009. [Google Scholar]
[37] K. Soetaert, T. Petzoldt, and R.W. Setzer, Solving differential equations in R: package deSolve, J. Stat. Softw. 33(9) (2010), pp. 1-25. doi: 10.18637/jss.v033.i09[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[38] M. Spivak, E. Mader, M. Vaughan, N.H. Euliss Jr., and H. Ned, The plight of the bees, Environ. Sci. Tech. 45(1) (2010), pp. 34-38. doi: 10.1021/es101468w[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[39] D.J.T. Sumpter and S.J. Martin, The dynamics of virus epidemics in varroa-infested honey bee colonies, J. Animal Ecol. 73(1) (2004), pp. 51-63. doi: 10.1111/j.1365-2656.2004.00776.x[Crossref], [Web of Science ®], [Google Scholar]
[40] C. Thom, T.D. Seeley, and J. Tautz, A scientific note on the dynamics of labor devoted to nectar foraging in a honey bee colony: Number of foragers versus individual foraging activity, Apidol. 31(6) (2000), pp. 737-738. doi: 10.1051/apido:2000158[Crossref], [Web of Science ®], [Google Scholar]
[41] W. Walter, Ordinary Differential Equations, Springer, New York, 1998. [Crossref], [Google Scholar] · Zbl 0991.34001
[42] G.R. Williams, M.A. Sampson, D. Shutler, and R.E.L. Rogers, Does fumagillin control the recently detected invasive parasite Nosema ceranae in western honey bees (Apis mellifera)? J. Invertebr. Pathol. 99(3) (2008), pp. 342-344. doi: 10.1016/j.jip.2008.04.005[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[43] M.L. Winston, The Biology of the Honey Bee, Harvard University Press, Cambridge, MA, 1991. [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.