On the topological boundary of the range of super-Brownian motion. (English) Zbl 1471.60072

Summary: We show that if \(\partial\mathcal{R}\) is the boundary of the range of super-Brownian motion and dim denotes Hausdorff dimension, then with probability one, for any open set \(U, U\cap\partial\mathcal{R}\neq\varnothing\) implies \[ \text{dim}(U\cap\partial\mathcal{R})=\begin{cases}4-2\sqrt{2}\approx1.17 &\text{if }d=2,\\ \frac{9-\sqrt{17}}{2}\approx2.44 &\text{if }d=3.\end{cases} \] This improves recent results of the last two authors by working with the actual topological boundary [Probab. Theory Relat. Fields 174, No. 3–4, 821–885 (2019; Zbl 1448.60145)], rather than the boundary of the zero set of the local time, and establishing a local result for the dimension.


60G57 Random measures
60J68 Superprocesses
60H30 Applications of stochastic analysis (to PDEs, etc.)
60J65 Brownian motion
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)


Zbl 1448.60145
Full Text: DOI arXiv Euclid


[1] Abraham, R. and Le Gall, J.-F. (1994). Sur la mesure de sortie du super mouvement brownien. Probab. Theory Related Fields 99 251-275. · Zbl 0801.60040
[2] Brezis, H., Peletier, L. A. and Terman, D. (1986). A very singular solution of the heat equation with absorption. Arch. Ration. Mech. Anal. 95 185-209. · Zbl 0627.35046
[3] Dawson, D. A., Iscoe, I. and Perkins, E. A. (1989). Super-Brownian motion: Path properties and hitting probabilities. Probab. Theory Related Fields 83 135-205. · Zbl 0692.60063
[4] Dawson, D. A. and Perkins, E. A. (1991). Historical processes. Mem. Amer. Math. Soc. 93 iv \(+179\). · Zbl 0754.60062
[5] Dellacherie, C. and Meyer, P.-A. (1978). Probabilities and Potential. North-Holland Mathematics Studies 29. North-Holland, Amsterdam. · Zbl 0494.60001
[6] Hesse, M. and Kyprianou, A. E. (2014). The mass of super-Brownian motion upon exiting balls and Sheu’s compact support condition. Stochastic Process. Appl. 124 2003-2022. · Zbl 1329.60294
[7] Hong, J. (2018). Renormalization of local times of super-Brownian motion. Electron. J. Probab. 23 Article ID 109. · Zbl 1402.60097
[8] Hong, J. (2019). Improved Hölder continuity near the boundary of one-dimensional super-Brownian motion. Electron. Commun. Probab. 24 Article ID 28. · Zbl 1481.60150
[9] Hong, J. Mytnik, L. and Perkins, E. (2020). Supplement to “On the topological boundary of the range of super-Brownian motion.” https://doi.org/10.1214/19-AOP1386SUPP.
[10] Iscoe, I. (1988). On the supports of measure-valued critical branching Brownian motion. Ann. Probab. 16 200-221. · Zbl 0635.60094
[11] Le Gall, J.-F. (1995). The Brownian snake and solutions of \(\Delta u=u^2\) in a domain. Probab. Theory Related Fields 102 393-432. · Zbl 0826.60062
[12] Le Gall, J.-F. (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel. · Zbl 0938.60003
[13] Le Gall, J.-F. (2018). Subordination of trees and the Brownian map. Probab. Theory Related Fields 171 819-864. · Zbl 1405.60128
[14] Mytnik, L. and Perkins, E. (2019). The dimension of the boundary of super-Brownian motion. Probab. Theory Related Fields 174 821-885. · Zbl 1448.60145
[15] Perkins, E. (2002). Dawson-Watanabe superprocesses and measure-valued diffusions. In Lectures on Probability Theory and Statistics (Saint-Flour, 1999). Lecture Notes in Math. 1781 125-324. Springer, Berlin. · Zbl 1020.60075
[16] Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov Processes, and Martingales, Vol. 2: Itô Calculus. Cambridge Mathematical Library. Cambridge Univ. Press, Cambridge. · Zbl 0977.60005
[17] Silverstein, M. L. (1967/1968). A new approach to local times. J. Math. Mech. 17 1023-1054. · Zbl 0184.41101
[18] Sugitani, S. (1989). Some properties for the measure-valued branching diffusion processes. J. Math. Soc. Japan 41 437-462. · Zbl 0684.60049
[19] Taylor, S. J. (1961). On the connexion between Hausdorff measures and generalized capacity. Proc. Camb. Philos. Soc. 57 524-531. · Zbl 0106.26802
[20] Yor, M. · Zbl 0765.60084
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.