×

zbMATH — the first resource for mathematics

Optimization of coordinate transformation matrix for \(H_{\infty}\) static-output-feedback control of 2-D discrete systems in FM second model. (English) Zbl 1448.93072
Summary: The problem of selecting a coordinate transformation matrix (CTM) for the \(H_{\infty}\) static-output-feedback control of two-dimensional discrete systems in the FM second model is an unsolved open problem. This brief aims to solve the problem. First, a cone complementarity linearization method is used to choose an initial CTM. Then, an iterative strategy is employed to optimize the choice of the CTM. A Numerical example is given to illustrate the effectiveness of the method.
MSC:
93B36 \(H^\infty\)-control
93D15 Stabilization of systems by feedback
93B52 Feedback control
Software:
HIFOO
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Apkarian, P., & Noll, D. (2006). Nonsmooth \[H_\infty H\]∞ synthesis. IEEE Transactions on Automatic Control, 51, 71-86.
[2] Bara, G. I., & Boutayeb, M. (2005). Static output feedback stabilization with \[H_{\infty }H\]∞ performance for linear discrete-time systems. IEEE Transactions on Automatic Control, 50, 250-254.
[3] Blondel, V., & Tsitsiklis, J. N. (1997). NP-hardness of some linear control design problems. SIAM Journal on Control and Optimization, 35, 2118-2127.
[4] Chang, X. H., & Yang, G. H. (2014). New results on output feedback \[H_{\infty }H\]∞ control for linear discrete-time systems. IEEE Transactions on Automatic Control, 59, 1355-1359.
[5] Du, C., & Xie, L. (2002). \[H_\infty H\]∞control and filtering of two-dimensional systems. Berlin: Springer.
[6] Du, C., Xie, L., & Zhang, C. (2001). \[H_\infty H\]∞ control and robust stabilization of two-dimensional systems in Roesser models. Automatica, 37, 205-211.
[7] Feng, Z.-Y., Wu, Q., & Xu, L. (2012). \[H_\infty H\]∞ control of linear multidimensional discrete systems. Multidimensional Systems and Signal Processing, 23(3), 381-411.
[8] Feng, Z.-Y., Xu, L., Li, Y., Fan, H., & Guo, X. (2014). Optimization of coordinate transformation matrix for discrete-time \[H_{\infty }H\]∞ static-output-feedback control problems. In 2014 33rd Chinese control conference, Nanjing.
[9] Feng, Z.-Y., Xu, L., Liu, Z.-T., & Li, D.-Y. (2015). A hybrid optimization approach for discrete-time \[H_{\infty }H\]∞ static-output-feedback control problem. In 2015 34rd Chinese control conference, Hangzhou.
[10] Feng, Z.-Y., Xu, L., She, J., & Guo, X. (2015). Optimization of coordinate transformation matrix for \[H_{\infty }H\]∞ static-output-feedback control of linear discrete-time systems. Asian Journal of Control, 17(2), 604-614.
[11] Feng, Z.-Y., Xu, L., Wu, M., & She, J. (2012). \[H_{\infty }H\]∞ static output feedback control of 2-D discrete systems in FM second model. Asian Journal of Control, 14(5), 1-9.
[12] Fornasini, E., & Marchesini, G. (1976). State-space realization theory of two-dimensional filters. IEEE Transactions on Automatic Control, 21(4), 484-492.
[13] Ghaoui, E. L., Oustry, F., & AitRami, M. (1997). A cone complementarity linearization algorithms for static output feedback and related problems. IEEE Transactions on Automatic Control, 42, 1171-1176.
[14] Kaczorek, T. (1985). Two-dimensional linear systems. Berlin: Springer.
[15] Lee, K. H., Lee, J. H., & Kwon, W. H. (2006). Sufficient LMI conditions for \[H_{\infty }H\]∞ output feedback stabilization of linear discrete-time systems. IEEE Transactions on Automatic Control, 51, 675-680.
[16] Li, X., & Gao, H. (2012). Robust finite frequency \[H_\infty H\]∞ filtering for uncertain 2-D Roesser systems. Automatica, 48(6), 1163-1170.
[17] Li, X., & Gao, H. (2013). Robust finite frequency \[H_\infty H\]∞ filtering for uncertain 2-D systems: The FM model case. Automatica, 49(8), 2446-2452.
[18] Li, X., Gao, H., & Wang, C. (2012). Generalized Kalman-Yakubovich-Popov lemma for 2-D FM LSS model. IEEE Transactions on Automatic Control, 57(12), 3090-3103.
[19] Li, X., Lam, J., Gao, H., & Gu, Y. (2015). A frequency-partitioning approach to stability analysis of two-dimensional discrete systems. Multidimensional Systems and Signal Processing, 26(1), 67-93.
[20] Lin, Z. (1999). Feedback stabilization of MIMO 3-D linear systems. IEEE Transactions on Automatic Control, 44(10), 1950-1955.
[21] Lin, Z. (1999). Notes on n-D polynomial matrix factorizations. Multidimensional Systems and Signal Processing, 10(4), 379-393.
[22] Lin, Z., & Bruton, L. T. (1989). BIBO stability of inverse 2-D digital filters in the presence of nonessential singularities of the second kind. IEEE Transactions on Circuits and Systems, 36(2), 244-254.
[23] Lu, W. S., & Antoniou, A. (1992). Two-dimensional digital filters. New York: Marcel Dekker.
[24] Popov, A. P., Werner, H. & Millstone, M. (2010). Fixed-structure discrete-time \[H_\infty H\]∞ controller synthesis with HIFOO. In Proceedings of the 49th IEEE conference on decision and control, Atlanta, GA.
[25] Tuan, H. D., Apkarian, P., Nguyen, T. Q., & Narikiyo, T. (2002). Robust mixed \[H_2/H_\infty\] H2/H∞ filtering of 2-D systems. IEEE Transactions on Signal Processing, 50(7), 1759-1771.
[26] Xie, L., Du, C., Soh, Y. C., & Zhang, C. (2002). \[H_\infty H\]∞ and robust control of 2-D systems in FM second model. Multidimensional Systems and Signal Processing, 13, 265-287.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.