×

zbMATH — the first resource for mathematics

Manifold learning for organizing unstructured sets of process observations. (English) Zbl 1447.37075
Summary: Data mining is routinely used to organize ensembles of short temporal observations so as to reconstruct useful, low-dimensional realizations of an underlying dynamical system. In this paper, we use manifold learning to organize unstructured ensembles of observations (“trials”) of a system’s response surface. We have no control over where every trial starts, and during each trial, operating conditions are varied by turning “agnostic” knobs, which change system parameters in a systematic, but unknown way. As one (or more) knobs “turn,” we record (possibly partial) observations of the system response. We demonstrate how such partial and disorganized observation ensembles can be integrated into coherent response surfaces whose dimension and parametrization can be systematically recovered in a data-driven fashion. The approach can be justified through the Whitney and Takens embedding theorems, allowing reconstruction of manifolds/attractors through different types of observations. We demonstrate our approach by organizing unstructured observations of response surfaces, including the reconstruction of a cusp bifurcation surface for hydrogen combustion in a continuous stirred tank reactor. Finally, we demonstrate how this observation-based reconstruction naturally leads to informative transport maps between the input parameter space and output/state variable spaces.
©2020 American Institute of Physics

MSC:
37M99 Approximation methods and numerical treatment of dynamical systems
68Q32 Computational learning theory
93B47 Iterative learning control
Software:
CHEMKIN
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Doedel, E. J., Congr. Numer., 30, 25 (1981)
[2] Doedel, E. J., Fairgrieve, T. F., Sandstede, B., Champneys, A. R., Kuznetsov, Y. A., and Wang, X. (2007), see doi:10.1.1.423.2590.
[3] Dhooge, A.; Govaerts, W.; Kuznetsov, Y. A., ACM Trans. Math. Softw., 29, 141 (2003) · Zbl 1070.65574
[4] Coifman, R. R.; Lafon, S.; Lee, A. B.; Maggioni, M.; Nadler, B.; Warner, F.; Zucker, S. W., Proc. Natl. Acad. Sci. U.S.A., 102, 7426 (2005) · Zbl 1405.42043
[5] Sauer, T., Phys. Rev. Lett., 72, 3811 (1994)
[6] Yair, O.; Talmon, R.; Coifman, R. R.; Kevrekidis, I. G., Proc. Natl. Acad. Sci. U.S.A., 114, E7865 (2017) · Zbl 1407.62306
[7] Brunton, S. L.; Proctor, J. L.; Kutz, J. N., Proc. Natl. Acad. Sci. U.S.A., 113, 3932 (2016) · Zbl 1355.94013
[8] Moore, B., IEEE Trans. Automat. Contr., 26, 17 (1981) · Zbl 0464.93022
[9] Takens, F., in Dynamical Systems and Turbulence, Warwick 1980 (Springer, 1981), pp. 366-381.
[10] Berry, T.; Sauer, T., Appl. Comput. Harmon. Anal., 40, 439-469 (2015)
[11] Belkin, M.; Niyogi, P., Neural Comput., 15, 1373 (2003) · Zbl 1085.68119
[12] Dsilva, C. J.; Talmon, R.; Coifman, R. R.; Kevrekidis, I. G., Appl. Comput. Harmon. Anal., 44, 759 (2018) · Zbl 1390.68523
[13] Berry, T.; Harlim, J., Appl. Comput. Harmon. Anal., 45, 84 (2018) · Zbl 1386.37084
[14] Chung, F. R. K., Spectral Graph Theory (1996), American Mathematical Society
[15] Nadler, B.; Lafon, S.; Coifman, R. R.; Kevrekidis, I. G., Appl. Comput. Harmon. Anal., 21, 113 (2006) · Zbl 1103.60069
[16] Shnitzer, T.; Talmon, R.; Slotine, J.-J., IEEE Trans. Signal Process., 65, 904 (2017) · Zbl 1414.94565
[17] Sauer, T.; Yorke, J. A.; Casdagli, M., J. Stat. Phys., 65, 579 (1991) · Zbl 0943.37506
[18] Golubitsky, M.; Guillemin, V., Stable Mappings and Their Singularities (1973), Springer US · Zbl 0294.58004
[19] Law, C. K., Combustion Physics (2006), Cambridge University Press
[20] Kooshkbaghi, M.; Frouzakis, C. E.; Boulouchos, K.; Karlin, I. V., Combust. Flame, 162, 3166 (2015)
[21] Conaire, M. Ó.; Curran, H. J.; Simmie, J. M.; Pitz, W. J.; Westbrook, C. K., Int. J. Chem. Kinet., 36, 603 (2004)
[22] Kee, R. J., Rupley, F. M., Meeks, E., and Miller, J. A., “CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics,” Technical Report, Sandia National Laboratories, Livermore, CA, 1996.
[23] Berry, T.; Harlim, J., Appl. Comput. Harmon. Anal., 40, 68 (2016) · Zbl 1343.94020
[24] Singer, A., Appl. Comput. Harmon. Anal., 21, 128 (2006) · Zbl 1095.68102
[25] Budišić, M.; Mohr, R.; Mezić, I., Chaos, 22, 047510 (2012) · Zbl 1319.37013
[26] Williams, M. O.; Kevrekidis, I. G.; Rowley, C. W., J. Nonlinear Sci., 25, 1307 (2015) · Zbl 1329.65310
[27] Bollt, E. M.; Li, Q.; Dietrich, F.; Kevrekidis, I., SIAM J. Appl. Dyn. Syst., 17, 1925 (2018) · Zbl 1408.37010
[28] Bandt, C.; Pompe, B., Phys. Rev. Lett., 88, 174102 (2002)
[29] Talmon, R.; Cohen, I.; Gannot, S.; Coifman, R. R., IEEE Signal Process. Mag., 30, 75 (2013)
[30] Evans, L. C.; Gangbo, W., Differential Equations Methods for the Monge-Kantorevich Mass Transfer Problem (1999), American Mathematical Society · Zbl 0920.49004
[31] Belkin, M., Que, Q., Wang, Y., and Zhou, X., in Proceedings of the 25th Annual Conference on Learning Theory, Proceedings of Machine Learning Research, Vol. 23, edited by S. Mannor, N. Srebro, and R. C. Williamson (PMLR, Edinburgh, Scotland, 2012), pp. 36.1-36.26.
[32] Wasserstein, L. N., Probl. Inform. Transmission, 5, 47 (1969)
[33] Villani, C., Optimal Transport (2009), Springer: Springer, Berlin
[34] Baladi, V., Positive Transfer Operators and Decay of Correlation (2000), World Scientific Publishing Co. Inc. · Zbl 1012.37015
[35] Ruelle, D., Thermodynamic Formalism (2012), Cambridge University Press
[36] Bollt, E. M.; Santitissadeekorn, N., Applied and Computational Measurable Dynamics (2013), Society for Industrial and Applied Mathematics · Zbl 1417.37008
[37] Gilbert, E. N.; Pollak, H. O., SIAM J. Appl. Math., 16, 1 (1968) · Zbl 0159.22001
[38] Xia, Q., Commun. Contemp. Math., 05, 251 (2003) · Zbl 1032.90003
[39] Singer, A.; Coifman, R. R., Appl. Comput. Harmon. Anal., 25, 226 (2008) · Zbl 1144.62044
[40] Dsilva, C. J.; Talmon, R.; Gear, C. W.; Coifman, R. R.; Kevrekidis, I. G., SIAM J. Appl. Dyn. Sys., 15, 1327 (2016) · Zbl 1353.37151
[41] Courty, N.; Flamary, R.; Tuia, D.; Rakotomamonjy, A., IEEE Trans. Pattern Anal. Mach. Intell., 39, 1853 (2017)
[42] Yair, O.; Ben-Chen, M.; Talmon, R., IEEE Trans. Signal Process., 67, 1797 (2019) · Zbl 1458.65051
[43] Froyland, G.; Kwok, E., J. Nonlinear Sci. (2017)
[44] Moosmüller, C.; Dietrich, F.; Kevrekidis, I. G.
[45] Packard, N. H.; Crutchfield, J. P.; Farmer, J. D.; Shaw, R. S., Phys. Rev. Lett., 45, 712 (1980)
[46] Aeyels, D., SIAM J. Control Optim., 19, 595 (1981) · Zbl 0474.93016
[47] Stark, J.; Broomhead, D.; Davies, M.; Huke, J., Nonlinear Anal. Theory Methods Appl., 30, 5303 (1997) · Zbl 0896.93019
[48] Stark, J., J. Nonlinear Sci., 9, 255 (1999) · Zbl 0985.37098
[49] Stark, J.; Broomhead, D.; Davies, M.; Huke, J., J. Nonlinear Sci., 13, 519 (2003)
[50] Whitney, H., Ann. Math., 37, 645 (1936) · JFM 62.1454.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.