×

zbMATH — the first resource for mathematics

Tensorial rheological model for concentrated non-colloidal suspensions: normal stress differences. (English) Zbl 1460.76854
Summary: Only few rheological models in the literature simultaneously capture the two main non-Newtonian trends of non-colloidal suspensions, namely finite normal stress differences and transient effects. We address this issue by extending a previously proposed minimal model accounting for microstructure anisotropy through a conformation tensor, which was shown to correctly predict transient effects [the authors, “ A new rate-independent tensorial model for suspensions of noncolloidal rigid particles in Newtonian fluids”, J. Rheol. 62, No. 4, 889–903 (2018; doi:10.1122/1.4995817)]. A systematic sensitivity study was performed to provide insights into the physical interpretation of the various model terms. This new model is compared to a large experimental dataset involving varying volume fractions, from dilute to concentrated cases. Both apparent viscosity and normal stress differences in steady state are quantitatively reproduced in the whole range of volume fraction, and qualitative agreement for transient evolution of apparent viscosity during shear reversal is obtained. Furthermore, the model is validated against particle pressure measurements that were not used for parameter identification. Even if the proposed constitutive equation for the Cauchy stress tensor is more difficult to interpret than in the minimal model, this study opens the way for the use of conformation tensor rheological models in applications where the effect of normal stress differences is prominent, like elongational flows or particle migration processes.
Reviewer: Reviewer (Berlin)
MSC:
76T20 Suspensions
76A05 Non-Newtonian fluids
Software:
LMFIT; LSODE; Python; SciPy
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Batchelor, G. K. & Green, J. T.1972The determination of the bulk stress in a suspension of spherical particles to order c^2. J. Fluid Mech.56 (03), 401-427. · Zbl 0246.76108
[2] Baumgarten, A. S. & Kamrin, K.2019A general fluid-sediment mixture model and constitutive theory validated in many flow regimes. J. Fluid Mech.861, 721-764. · Zbl 1421.76247
[3] Blanc, F., Lemaire, E., Meunier, A. & Peters, F.2013Microstructure in sheared non-Brownian concentrated suspensions. J. Rheol.57 (1), 273-292.
[4] Blanc, F., Peters, F. & Lemaire, E.2011Local transient rheological behavior of concentrated suspensions. J. Rheol.55 (4), 835-854.
[5] Boyer, F., Pouliquen, O. & Guazzelli, E.2011Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech.686, 5-25. · Zbl 1241.76008
[6] Brady, J. F. & Bossis, G.1985The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech.155, 105-129.
[7] Chacko, R. N., Mari, R., Fielding, S. M. & Cates, M. E.2018Shear reversal in dense suspensions: the challenge to fabric evolution models from simulation data. J. Fluid Mech.847, 700-734. · Zbl 1404.76270
[8] Couturier, E., Boyer, F., Pouliquen, O. & Guazzelli, E.2011Suspensions in a tilted trough: second normal stress difference. J. Fluid Mech.686, 26-39. · Zbl 1241.76014
[9] Dai, S. & Tanner, R. I.2017Elongational flows of some non-colloidal suspensions. Rheol. Acta56 (1), 63-71.
[10] Dai, S.-C., Bertevas, E., Qi, F. & Tanner, R. I.2013Viscometric functions for noncolloidal sphere suspensions with Newtonian matrices. J. Rheol.57 (2), 493-510.
[11] Dbouk, T.2016A suspension balance direct-forcing immersed boundary model for wet granular flows over obstacles. J. Non-Newtonian Fluid Mech.230, 68-79.
[12] Dbouk, T., Lobry, L. & Lemaire, E.2013Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech.715, 239-272. · Zbl 1284.76378
[13] Deboeuf, A., Gauthier, G., Martin, J., Yurkovetsky, Y. & Morris, J. F.2009Particle pressure in a sheared suspension: a bridge from osmosis to granular dilatancy. Phys. Rev. Let.102 (10), 108301.
[14] Denn, M. M. & Morris, J. F.2014Rheology of non-Brownian suspensions. Annu. Rev. Chem. Biomol. Engng5, 203-228.
[15] Einstein, A.1906Eine neue bestimmung der molek├╝ldimensionen. Ann. Phys. Ser. 419, 289-306. · JFM 37.0811.01
[16] Gadala-Maria, F.1979 The rheology of concentrated suspensions. PhD thesis, Stanford University.
[17] Gadala-Maria, F. & Acrivos, A.1980Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol.24 (6), 799-814.
[18] Gallier, S., Lemaire, E., Peters, F. & Lobry, L.2014Rheology of sheared suspensions of rough frictional particles. J. Fluid Mech.757, 514-549. · Zbl 1416.76326
[19] Goddard, J. D.1982Memory materials without characteristic time and their relation to the rheology of certain particle suspensions. Adv. Colloid Interface Sci.17 (1), 241-262.
[20] Goddard, J. D.2006A dissipative anisotropic fluid model for non-colloidal particle dispersions. J. Fluid Mech.568, 1-17. · Zbl 1177.76444
[21] Gordon, R. J. & Schowalter, W. R.1972Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions. J. Rheol.16, 79-97. · Zbl 0368.76006
[22] Guazzelli, E. & Pouliquen, O.2018Rheology of dense granular suspensions. J. Fluid Mech.852, P1. · Zbl 1415.76680
[23] Haddadi, H., Shojaei-Zadeh, S., Connington, K. & Morris, J. F.2014Suspension flow past a cylinder: particle interactions with recirculating wakes. J. Fluid Mech.760, R2.
[24] Hand, G. L.1962A theory of anisotropic fluids. J. Fluid Mech.13 (1), 33-46. · Zbl 0108.38402
[25] Hulsen, M. A.1990A sufficient condition for a positive definite configuration tensor in differential models. J. Non-Newtonian Fluid Mech.38 (1), 93-100.
[26] Jackson, R.2000The Dynamics of Fluidized Particles. Cambridge University Press. · Zbl 0956.76004
[27] Kolli, V. G., Pollauf, E. J. & Gadala-Maria, F.2002Transient normal stress response in a concentrated suspension of spherical particles. J. Rheol.46 (1), 321-334.
[28] Lehoucq, R., Weiss, J., Dubrulle, B., Amon, A., Le Bouil, A., Crassous, J., Amitrano, D. & Graner, F.2015Analysis of image versus position, scale and direction reveals pattern texture anisotropy. Front. Phys.2, 84.
[29] Leighton, D. & Acrivos, A.1987The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech.181, 415-439.
[30] Mari, R., Seto, R., Morris, J. F. & Denn, M. M.2014Shear thickening, frictionless and frictional rheologies in non-Brownian suspensions. J. Rheol.58 (6), 1693-1724.
[31] Maron, S. H. & Pierce, P. E.1956Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. J. Colloid Sci.11 (1), 80-95.
[32] Miller, R. M. & Morris, J. F.2006Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. J. Non-Newtonian Fluid Mech.135 (2-3), 149-165. · Zbl 1195.76406
[33] More, J. J., Garbow, B. S. & Hillstrom, K. E.1980 User guide for MINIPACK-1.[in fortran]. Tech. Rep. Argonne National Lab., IL, USA. doi:10.2172/6997568.
[34] Morris, J. F. & Boulay, F.1999Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol.43 (5), 1213-1237.
[35] Newville, M., Stensitzki, T., Allen, D. B., Rawlik, M., Ingargiola, A. & Nelson, A.2016Lmfit: non-linear least-square minimization and curve-fitting for Python. Astrophys. Source Code Lib. Available at https://ui.adsabs.harvard.edu/abs/2016ascl.soft06014N.
[36] Nott, P. R. & Brady, J. F.1994Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech.275, 157-199. · Zbl 0925.76835
[37] Nott, P. R., Guazzelli, E. & Pouliquen, O.2011The suspension balance model revisited. Phys. Fluids23 (4), 043304.
[38] Ozenda, O., Saramito, P. & Chambon, G.2018A new rate-independent tensorial model for suspensions of noncolloidal rigid particles in Newtonian fluids. J. Rheol.62 (4), 889-903.
[39] Pailha, M. & Pouliquen, O.2009A two-phase flow description of the initiation of underwater granular avalanches. J. Fluid Mech.633, 115-135. · Zbl 1183.76906
[40] Peters, F., Ghigliotti, G., Gallier, S., Blanc, F., Lemaire, E. & Lobry, L.2016Rheology of non-Brownian suspensions of rough frictional particles under shear reversal: a numerical study. J. Rheol.60 (4), 715-732.
[41] Phan-Thien, N.1995Constitutive equation for concentrated suspensions in Newtonian liquids. J. Rheol.39 (4), 679-695.
[42] Radhakrishnan, K. & Hindmarsh, A. C.1993 Description and use of lsode, the livermore solver for ordinary differential equations. Tech. Rep. L.L.N. Lab., Livermore, CA (USA).
[43] Royer, J. R., Blair, D. L. & Hudson, S. D.2016Rheological signature of frictional interactions in shear thickening suspensions. Phys. Rev. Let.116 (18), 188301.
[44] Saramito, P.2016Complex Fluids: Modelling and Algorithms. Springer. · Zbl 1361.76001
[45] Sierou, A. & Brady, J. F.2002Rheology and microstructure in concentrated noncolloidal suspensions. J. Rheol.46, 1031-1056.
[46] Singh, A., Mari, R., Denn, M. M. & Morris, J. F.2018A constitutive model for simple shear of dense frictional suspensions. J. Rheol.62 (2), 457-468.
[47] Singh, A. & Nott, P. R.2003Experimental measurements of the normal stresses in sheared Stokesian suspensions. J. Fluid Mech.490, 293-320. · Zbl 1063.76512
[48] Stickel, J. J., Phillips, R. J. & Powell, R. L.2006A constitutive model for microstructure and total stress in particulate suspensions. J. Rheol.50 (4), 379-413.
[49] Stickel, J. J., Phillips, R. J. & Powell, R. L.2007Application of a constitutive model for particulate suspensions: time-dependent viscometric flows. J. Rheol.51 (6), 1271-1302.
[50] Yapici, K., Powell, R. L. & Phillips, R. J.2009Particle migration and suspension structure in steady and oscillatory plane Poiseuille flow. Phys. Fluids21 (5), 053302. · Zbl 1183.76583
[51] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.et al.2020SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Meth.17, 261-272.
[52] Zarraga, I. E., Hill, D. A. & Leighton, D. T. Jr2000The characterization of the total stress of concentrated suspensions of noncolloidal spheres in Newtonian fluids. J. Rheol.44 (2), 185-220.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.