zbMATH — the first resource for mathematics

Practical abstractions for automated verification of shared-memory concurrency. (English) Zbl 07228517
Beyer, Dirk (ed.) et al., Verification, model checking, and abstract interpretation. 21st international conference, VMCAI 2020, New Orleans, LA, USA, January 16–21, 2020. Proceedings. Cham: Springer (ISBN 978-3-030-39321-2/pbk; 978-3-030-39322-9/ebook). Lecture Notes in Computer Science 11990, 401-425 (2020).
Summary: Modern concurrent and distributed software is highly complex. Techniques to reason about the correct behaviour of such software are essential to ensure its reliability. To be able to reason about realistic programs, these techniques must be modular and compositional as well as practical by being supported by automated tools. However, many existing approaches for concurrency verification are theoretical and focus on expressivity and generality. This paper contributes a technique for verifying behavioural properties of concurrent and distributed programs that makes a trade-off between expressivity and usability. The key idea of the approach is that program behaviour is abstractly modelled using process algebra, and analysed separately. The main difficulty is presented by the typical abstraction gap between program implementations and their models. Our approach bridges this gap by providing a deductive technique for formally linking programs with their process-algebraic models. Our verification technique is modular and compositional, is proven sound with Coq, and has been implemented in the automated concurrency verifier VerCors. Moreover, our technique is demonstrated on multiple case studies, including the verification of a leader election protocol.
For the entire collection see [Zbl 1429.68006].
68Q60 Specification and verification (program logics, model checking, etc.)
Full Text: DOI