zbMATH — the first resource for mathematics

An effective pure meshfree method for 1D/2D time fractional convection-diffusion problems on irregular geometry. (English) Zbl 07228823
Summary: An easy implemented and effective pure meshfree method is first developed to solve the 1D/2D constant/variable-order time fractional convection-diffusion equation (TF-CDE) on non-regular domain with two boundary conditions in this paper. The proposed method (CSPH-FDM) is derived from that the finite difference scheme (FDM) for Caputo time fractional derivative and a corrected smoothed particle hydrodynamics (CSPH) without kernel derivative for spatial derivatives. In the proposed CSPH-FDM, the high-order spatial derivative is divided into multi first-order derivatives and solved continuously by the CSPH, the Neumann boundary condition can be accurately treated, the two distribution cases of the local refinement and irregular particles or the arbitrary irregular shape domain can be easily and effectively implemented by the CSPH. To demonstrate the validity and numerical convergent order of the proposed method, several 1D/2D analytical examples with local refinement and irregular particles distributions or on complex geometries are first investigated, in which a four-order derivate problem with Neumann boundary is also considered. Subsequently, the CSPH-FDM is extended to predict the solute moving process versus time by two TF-CDEs on different irregular domains and compared with other numerical results. All the numerical results show the flexible application ability and reliability of the present method.
76 Fluid mechanics
65 Numerical analysis
Full Text: DOI
[1] Lavoie, J. L.; Tremblay, T. J.O., Fractional Derivatives and Special Functions, SIAM REV, 18, 2, 240-268 (1976) · Zbl 0324.44002
[2] Oustaloup, A.; Coiffet, P., Systemes asservis lineaires d’ordre fractionnaire:Theorie et pratique (1983), Masson: Masson Paris
[3] Adams, E. E.; Gelhar, L. W., Field study of dispersion in a heterogeneous aquifer:2. Spatial moments analysis, Water Resour Res, 28, 12, 3293-3307 (1992)
[4] Raberto, M.; Scalas, E.; Mainardi, F., Waiting-times and returns in high-frequency financial data: an empirical study, Physica A, 314, 1, 749-755 (2002) · Zbl 1001.91033
[5] Moaddy, K.; Momani, S.; Hashim, I., The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics, Comput Math Appl, 61, 4, 1209-1216 (2011) · Zbl 1217.65174
[6] Magin, R. L., Fractional calculus in bioengineering, Crit Rev Biomed Eng, 32, 1, 1-104 (2004)
[7] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional integrals and derivatives: theory and applications (1993) · Zbl 0818.26003
[8] Rossikhin, Y. A.; Shitikova, M. V., Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl Mech Rev, 50, 1, 15-67 (1997)
[9] Podlubny, I., Fractional differential equations (1999), Academic Press: Academic Press San Diego · Zbl 0918.34010
[10] Baillie, R. T., Long memory processes and fractional integration in econometrics, J Econometrics, 73, 1, 5-59 (1996) · Zbl 0854.62099
[11] Mainardi, F., Fractional calculus: some basic problems in countinuum and statistic mechanics, In: Fractals Fract Calc Contin Mech, 378, 291-348 (2012)
[12] Zhao, X.; Sun, Z. Z.; Karniadakis, G. E., Second-order approximations for variable order fractional derivatives: algorithms and applications, J Comput Phys, 293, 184-200 (2015) · Zbl 1349.65092
[13] Lin, Y.; Xu, C., Finite difference spectral approximations for the time-fractional diffusion equation, J Comput Phys, 225, 2, 1533-1552 (2007) · Zbl 1126.65121
[14] Ercilia, S.; Li, C., A weighted finite difference method for the fractional diffusion equation based on the Riemann-Liouville derivative, Appl Numer Math, 90, 22-37 (2015) · Zbl 1326.65111
[15] Gao, G. H.; Sun, H. W.; Sun, Z. Z., Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence, J Comput Phys, 280, 510-528 (2015) · Zbl 1349.65295
[16] Shen, S. J.; Liu, F. W.; Anh, V., The analytical solution and numerical solutions for a two-dimensional multi-term time fractional diffusion and diffusion-wave equation, J Comput Appl Math, 345, 515-534 (2019) · Zbl 1398.65229
[17] Gao, G. H.; Sun, Z. Z.; Zhang, H. W., A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J Comput Phys, 259, 33-50 (2014) · Zbl 1349.65088
[18] Alikhanov, A. A., A new difference scheme for the time fractional diffusion equation, J Comput Phys, 280, 424-438 (2015) · Zbl 1349.65261
[19] Sun, J.; Nie, D. X.; Deng, W. H., Fast algorithms for convolution quadrature of Riemann-Liouville fractional derivative, Appl Numer Math, 145, 384-410 (2019) · Zbl 07106375
[20] Ren, J.; Gao, G. H., Efficient and stable numerical methods for the two-dimensional fractional Cattaneo equation, Numer Algorithms, 69, 4, 795-818 (2015) · Zbl 1322.65087
[21] Zhao, X.; Xu, Q., Efficient numerical schemes for fractional sub-diffusion equation with the spatially variable coefficient, Appl Math Modell, 38, 15-16, 3848-3859 (2014) · Zbl 1429.65210
[22] Vong, S.; Lyu, P.; Wang, Z. B., A compact difference scheme for fractional sub-diffusion equations with the spatially variable coefficient under neumann boundary conditions, J Sci Comput, 66, 2, 725-739 (2015) · Zbl 1346.65041
[23] Scherer, R.; Kalla, S. L.; Tang, Y., The Grünwald-Letnikov method for fractional differential equations, Comput Math Appl, 62, 3, 902-917 (2011) · Zbl 1228.65121
[24] Zhang, P.; Pu, H., A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation, Numer Algorithms, 76, 2, 573-598 (2017) · Zbl 1378.65161
[25] Zhang, H.; Liu, F.; Phanikumar, M. S.; Meerschaert, M. M., A novel numerical method for the time variable fractional order mobile-immobile advection-dispersion model, Comput Appl Math, 66, 5, 693-701 (2013) · Zbl 1350.65092
[26] Wang, P. D.; Huang, C. M., An energy conservative difference scheme for the nonlinear fractional Schrdinger equations, J Comput Phys, 293, 238-251 (2015) · Zbl 1349.65346
[27] Zhuang, P.; Liu, F.; Turner, V. A., Numerical methods for the variable-order fractional advection diffusion equation with a nonlinear source term, Numer Anal, 47, 3, 1760-1781 (2009) · Zbl 1204.26013
[28] Liu, F.; Zhuang, P.; Turner, V. A.; Burrage, K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Comput Appl Math, 191, 1, 12-21 (2007) · Zbl 1193.76093
[29] Fazio, R.; Jannelli, A., A finite difference method on quasi-uniform mesh for time-fractional advection-diffusion equations with source term, Appl Sci, 8, 6, 960-976 (2018)
[30] Liu, Y.; Fang, Z.; Li, H., A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl Math Comput, 243, 703-717 (2014) · Zbl 1336.65166
[31] Bu, W. P.; Tang, Y. F.; Yang, J. Y., Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations, J Comput Phys, 276, 26-38 (2014) · Zbl 1349.65441
[32] Jiang, Y.; Ma, J., High-order finite element methods for time-fractional partial differential equations, J Comput Appl Math, 235, 11, 3285-3290 (2011) · Zbl 1216.65130
[33] Deng, W. H., Finite element method for the space and time fractional Fokker-Planck equation, SIAM J Numer Anal, 47, 1, 204-226 (2009) · Zbl 1416.65344
[34] Zheng, M. L.; Liu, F.; Turner, V. A., A novel high order space-time spectral method for the time fractional Fokker-Planck equation, SIAM J Sci Comput, 37, 2, 701-724 (2015)
[35] Nochetto, R. H.; Arola, E. O.; Sagado, A. J., A PDE approach to space-time fractional parabolic problems, SIAM J Numer Anal, 54, 2, 848-873 (2016) · Zbl 1337.26014
[36] Mao, Z.; Karniadakis, G. E., A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative, SIAM J Numer Anal, 56, 1, 24-49 (2018) · Zbl 1422.65428
[37] Mao, Z.; Shen, J., Efficient spectral-Galerkin methods for fractional partial differential equations with variable coefficients, J Comput Phys, 307, 243-261 (2016) · Zbl 1352.65395
[38] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput Method Appl M, 99, 2-3, 235-394 (1992) · Zbl 0763.73052
[39] Tayebi, A.; Shekari, Y.; Heydari, M. H., A meshless method for solving two-dimensional variable-order time fractional advection-diffusion equation, J Comput Phys, 340, 655-669 (2017) · Zbl 1380.65185
[40] Liu, J. M.; Li, X. K.; Hu, X. L., A RBF-based differential quadrature method for solving two-dimensional variable-order time fractional advection-diffusion equation, J Comput Phys, 384, 222-238 (2019)
[41] Liu, G. R.; Liu, M. B., Smoothed particle hydrodynamics - A Mesh-Free particle method (2003), World Scientific Pub Co Inc: World Scientific Pub Co Inc Singapore · Zbl 1046.76001
[42] Liu, G. R.; Liu, M. B., Smoothed Particle Hydrodynamics (SPH): an overview and recent developments, Arch Comput Method E, 17, 1, 25-76 (2010) · Zbl 1348.76117
[43] Swegle, J. W.; Hicks, D. L.; Attaway, S. W., Smoothed particle hydrodynamics stability analysis, J Comput Phys, 116, 1, 123-134 (1995) · Zbl 0818.76071
[44] Chen, J. K.; Beraun, J. E., A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems, Comput Method Appl Mech Eng, 190, 1-2, 225-239 (2000) · Zbl 0967.76077
[45] Monaghan, J. J.; Kocharyan, A., SPH simulation of multi-phase flow, Comput Phys Commun, 87, 1-2, 225-235 (1995) · Zbl 0923.76195
[46] Huang, C.; Zhang, D. H.; Shi, Y. X., Coupled finite particle method with a modified particle shifting technology, Int J Numer Meth Eng, 113, 2, 179-207 (2018)
[47] Huang, C.; Long, T.; Li, S. M.; Liu, M. B., A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils, Eng Anal Bound Elem, 106, 571-587 (2019) · Zbl 07110364
[48] Wang, L.; Xu, F.; Yang, Y., Improvement of the tensile instability in SPH scheme for the FEI (Fluid-Elastomer Interaction) problem, Eng Anal Bound Elem, 106, 116-125 (2019) · Zbl 07110327
[49] Sun, P.; Colagrossi, A.; Marrone, S., The δplus-SPH model: simple procedures for a further improvement of the SPH scheme, Comput Method Appl M, 315, 25-49 (2016) · Zbl 1439.76133
[50] Jiang, T.; Ouyang, J.; Ren, J. L., A mixed corrected symmetric SPH (MC-SSPH) method for computational dynamic problems, Comput Phys Commun, 183, 1, 50-62 (2012) · Zbl 06153326
[51] Ren, J. L.; Jiang, T.; Lu, W. G., An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows, Comput Phys Commun, 205, 87-105 (2016) · Zbl 1375.76150
[52] Yang, X. F.; Peng, S. L.; Liu, M. B., A new kernel function for SPH with applications to free surface flows, Appl Math Model, 38, 15-16, 3822-3833 (2014) · Zbl 1428.76162
[53] Zhuang, P.; Gu, Y. T.; Liu, F., Time-dependent fractional advection-diffusion equations by an implicit MLS meshless method, Int J Numer Meth Eng, 88, 13, 1346-1362 (2011) · Zbl 1242.76262
[54] Gu, Y. T.; Zhuang, P.; Liu, Q., An advanced meshless method for time fractional diffusion equation, Int J Comp Meth, 08, 04, 653-665 (2011) · Zbl 1245.65133
[55] Dehghan, M.; Salehi, R., A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations, J Comput Appl Math, 268, 1, 93-110 (2014) · Zbl 1293.65128
[56] Tayebi, A.; Shekari, Y.; Heydari, M. H., A meshless method for solving two-dimensional variable-order time fractional advection diffusion equation, J Comput Phys, 340, 655-669 (2017) · Zbl 1380.65185
[57] Dehghan, M.; Abbaszadeh, M., Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition, Comput Math Appl, 73, 6, 1270-1285 (2017) · Zbl 1412.65138
[58] Dehghan, M.; Mohammadi, V., The numerical solution of Cahn-Hilliard (CH) equation in one, two and three-dimensions via globally radial basis functions (GRBFs) and RBFs-differential quadrature (RBFs-DQ) methods, Eng Anal Bound Elem, 51, 74-100 (2015) · Zbl 1403.65085
[59] Dehghan, M.; Nikpour, A., Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method, Appl Math Model, 37, 18-19, 8578-8599 (2013) · Zbl 1426.65113
[60] Shirzadi, A.; Ling, L.; Abbasbandy, S., Meshless simulations of the two-dimensional fractional-time convection-diffusion-reaction equations, Eng Anal Bound Elem, 36, 11, 1522-1527 (2012) · Zbl 1352.65263
[61] Abbasbandy, S.; Shirzadi, A., MLPG method for two-dimensional diffusion equation with Neumann’s and non-classical boundary conditions, Appl Numer Math, 61, 170-180 (2011) · Zbl 1206.65229
[62] Zhang, G. M., Batra, Wave propagation in functionally graded materials by modified smoothed particle hydrodynamics (MSPH) method, J Comput Phys, 222, 374-390 (2007) · Zbl 1108.74032
[63] Liu, J. M.; Li, X. K., A novel Hermite RBF-based differential quadrature method for solving two-dimensional variable-order time fractional advection-diffusion equation with Neumann boundary condition, Computational Physics (2018), arXiv:1809.02301v1.
[64] Zayernouri, M.; Karniadakis, G. E., Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J Comput Phys, 293, 312-338 (2015) · Zbl 1349.65531
[65] Fu, Z. J.; Chen, W.; Ling, L., Method of approximate particular solutions for constant- and variable-order fractional diffusion models, Eng Anal Bound Elem, 57, 37-46 (2015) · Zbl 1403.65087
[66] Shekari Y. Tayebi, A.; Heydari, M. H., A meshfree approach for solving 2D variable-order fractional nonlinear diffusion-wave equation, Comput Methonds Appl Mech Engrg, 350, 154-168 (2019) · Zbl 1441.65079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.