zbMATH — the first resource for mathematics

Computational hermeneutics: an integrated approach for the logical analysis of natural-language arguments. (English) Zbl 07229671
Liao, Beishui (ed.) et al., Dynamics, uncertainty and reasoning. Selected papers of the second Chinese conference on logic and argumentation (CLAR 2018), Hangzhou, China, June 16–17, 2018. Singapore: Springer (ISBN 978-981-13-7790-7/hbk; 978-981-13-7793-8/pbk; 978-981-13-7791-4/ebook). Logic in Asia: Studia Logica Library, 187-207 (2019).
Summary: We utilize higher order automated deduction technologies for the logical analysis of natural-language arguments. Our approach, termed computational hermeneutics, is grounded on recent progress in the area of automated theorem proving for classical and nonclassical higher order logics, and it integrates techniques from argumentation theory. It has been inspired by ideas in the philosophy of language, especially semantic holism and Donald Davidson’s radical interpretation; a systematic approach to interpretation that does justice to the inherent circularity of understanding: the whole is understood compositionally on the basis of its parts, while each part is understood only in the context of the whole (hermeneutic circle). Computational hermeneutics is a holistic, iterative approach where we evaluate the adequacy of some candidate formalization of a sentence by computing the logical validity of (i) the whole argument it appears in and (ii) the dialectic role the argument plays in some piece of discourse.
For the entire collection see [Zbl 1428.03006].
03-06 Proceedings, conferences, collections, etc. pertaining to mathematical logic and foundations
Full Text: DOI
[1] Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, summer, 2018th edn. Stanford University, Metaphysics Research Lab (2018)
[2] Arieli, O., Straßer, C.: Sequent-based logical argumentation. Argum. Comput. 6(1), 73-99 (2015)
[3] Baumberger, C., Brun, G.: Dimensions of objectual understanding. In: Explaining Understanding. New Perspectives from Epistemology and Philosophy of Science, pp. 165-189 (2016)
[4] Baumgartner, M., Lampert, T.: Adequate formalization. Synthese 164(1), 93-115 (2008) · Zbl 1169.03308
[5] Bentert, M., Benzmüller, C., Streit, D., Woltzenlogel Paleo, B.: Analysis of an ontological proof proposed by Leibniz. In: Tandy, C. (ed.) Death and Anti-Death, Volume 14: Four Decades after Michael Polanyi, Three Centuries after G.W. Leibniz. Ria University Press (2016). https://philpapers.org/rec/TANDAA-10
[6] Benzmüller, C.: Universal (meta-)logical reasoning: recent successes. Sci. Comput. Program. 172, 48-62 (2019). https://doi.org/10.1016/j.scico.2018.10.008, https://doi.org/10.13140/RG.2.2.11039.61609/2
[7] Benzmüller, C., Brown, C., Kohlhase, M.: Higher-order semantics and extensionality. J. Symb. Logic 69(4), 1027-1088 (2004). https://doi.org/10.2178/jsl/1102022211, http://christoph-benzmueller.de/papers/J6.pdf · Zbl 1071.03024
[8] Benzmüller, C., Fuenmayor, D.: Can computers help to sharpen our understanding of ontological arguments? In: Gosh, S., Uppalari, R., Rao, K.V., Agarwal, V., Sharma, S. (eds.) Mathematics and Reality, Proceedings of the 11th All India Students’ Conference on Science & Spiritual Quest, 6-7 October 2018, IIT Bhubaneswar, Bhubaneswar, India. The Bhaktivedanta Institute, Kolkata. www.binstitute.org (2018). https://doi.org/10.13140/RG.2.2.31921.84323, http://christoph-benzmueller.de/papers/C74.pdf
[9] Benzmüller, C., Paulson, L.: Multimodal and intuitionistic logics in simple type theory. Logic J. IGPL 18(6), 881-892 (2010). https://doi.org/10.1093/jigpal/jzp080, http://christoph-benzmueller.de/papers/J21.pdf · Zbl 1222.03023
[10] Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory. Logica Universalis (Special Issue on Multimodal Logics) 7(1), 7-20 (2013). https://doi.org/10.1007/s11787-012-0052-y, http://christoph-benzmueller.de/papers/J23.pdf · Zbl 1334.03014
[11] Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389-404 (2015). https://doi.org/10.1007/s10817-015-9348-y, http://christoph-benzmueller.de/papers/J30.pdf · Zbl 1356.68176
[12] Benzmüller, C., Weber, L., Woltzenlogel-Paleo, B.: Computer-assisted analysis of the Anderson-Hájek controversy. Logica Universalis 11(1), 139-151 (2017). https://doi.org/10.1007/s11787-017-0160-9, http://christoph-benzmueller.de/papers/J32.pdf · Zbl 1417.03131
[13] Benzmüller, C., Woltzenlogel Paleo, B.: Automating Gödel’s ontological proof of God’s existence with higher-order automated theorem provers. In: Schaub, T., Friedrich, G., O’Sullivan, B. (eds.) Frontiers in Artificial Intelligence and Applications, ECAI 2014, vol. 263, pp. 93-98. IOS Press (2014). https://doi.org/10.3233/978-1-61499-419-0-93, http://christoph-benzmueller.de/papers/C40.pdf · Zbl 1366.03169
[14] Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological argument: a success story for AI in metaphysics. In: IJCAI 2016 (2016a). http://christoph-benzmueller.de/papers/C55.pdf · Zbl 1370.68258
[15] Benzmüller, C., Woltzenlogel Paleo, B.: An object-logic explanation for the inconsistency in Gödel’s ontological theory (extended abstract). In: Helmert, M., Wotawa, F. (eds.) Proceedings of Advances in Artificial Intelligence, KI 2016. LNCS, vol. 9725, pp. 43-50. Springer, Heidelberg (2016b). http://christoph-benzmueller.de/papers/C60.pdf · Zbl 1370.68258
[16] Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1-2), 203-235 (2001) · Zbl 0971.68143
[17] Besnard, P., Hunter, A.: Argumentation based on classical logic. In: Argumentation in Artificial Intelligence, pp. 133-152. Springer, Boston (2009)
[18] Blanchette, J., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Proceedings of ITP 2010. LNCS, vol. 6172, pp. 131-146. Springer, Heidelberg (2010) · Zbl 1291.68326
[19] Brun, G.: Die richtige Formel: Philosophische Probleme der logischen Formalisierung, vol. 2. Walter de Gruyter (2003)
[20] Cayrol, C., Lagasquie-Schiex, M.C.: On the acceptability of arguments in bipolar argumentation frameworks. In: European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pp. 378-389. Springer, Heidelberg (2005) · Zbl 1122.68639
[21] Cayrol, C., Lagasquie-Schiex, M.C.: Bipolar abstract argumentation systems. In: Rahwan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 65-84. Springer, Boston (2009) · Zbl 1191.68480
[22] Davidson, D.: Radical interpretation interpreted. Philos. Perspect. 8, 121-128 (1994)
[23] Davidson, D.: Essays on Actions and Events: Philosophical Essays, vol. 1. Oxford University Press on Demand, Oxford (2001)
[24] Davidson, D.: Inquiries into Truth and Interpretation: Philosophical Essays, vol. 2. Oxford University Press, Oxford (2001)
[25] Davidson, D.: Radical interpretation. In: Inquiries into Truth and Interpretation. Oxford University Press, Oxford (2001)
[26] Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. intell. 77(2), 321-357 (1995) · Zbl 1013.68556
[27] Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Argumentation in Artificial Intelligence, pp. 199-218. Springer, Boston (2009)
[28] van Eemeran, F.H., Grootendorst, R.: A Systematic Theory of Argumentation. Cambridge University Press, Cambridge (2004)
[29] Elgin, C.: Considered Judgment. Princeton University Press, New Jersey (1999)
[30] Fitelson, B., Zalta, E.N.: Steps toward a computational metaphysics. J. Philos. Logic 36(2), 227-247 (2007) · Zbl 1121.03009
[31] Fuenmayor, D., Benzmüller, C.: Automating emendations of the ontological argument in intensional higher-order modal logic. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) Advances in Artificial Intelligence, KI 2017, vol. 10505, pp. 114-127. Springer, Cham (2017a)
[32] Fuenmayor, D., Benzmüller, C.: Computer-assisted reconstruction and assessment of E. J. Lowe’s modal ontological argument. Archive of Formal Proofs (2017b). http://isa-afp.org/entries/Lowe_Ontological_Argument.html, Formal proof development
[33] Fuenmayor, D., Benzmüller, C.: A case study on computational hermeneutics: E. J. Lowe’s modal ontological argument. IfCoLoG J. Logics Appl. (Special issue on Formal Approaches to the Ontological Argument) (2018). http://christoph-benzmueller.de/papers/J38.pdf
[34] Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR-21 EPiC Series in Computing, vol. 46, pp. 14-30. EasyChair, Maun, Botswana (2017). https://doi.org/10.29007/jsb9, https://easychair.org/publications/paper/340346 · Zbl 1403.68225
[35] Gödel, K.: Appx. A: Notes in Kurt Gödel’s Hand, pp. 144-145. In: [50] (2004). http://books.google.de/books?id=ZQh8QJOQdOQC
[36] Goodman, N.: Fact, Fiction, and Forecast. Harvard University Press, Cambridge (1983)
[37] Groenendijk, J., Stokhof, M.: Dynamic predicate logic. Linguist. Philos. 14(1), 39-100 (1991) · Zbl 0726.03024
[38] Kamp, H., Van Genabith, J., Reyle, U.: Discourse representation theory. In: Handbook of Philosophical Logic, pp. 125-394. Springer, Dordrecht (2011)
[39] Lowe, E.J.: A modal version of the ontological argument. In: Moreland, J.P., Sweis, K.A., Meister, C.V. (eds.) Debating Christian Theism, Chap. 4, pp. 61-71. Oxford University Press (2013)
[40] Montague, R.: Formal Philosophy: Selected Papers of Richard Montague. Ed. and with an Introd. by Richmond H. Thomason. Yale University Press (1974)
[41] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. No. 2283 in LNCS. Springer, Heidelberg (2002) · Zbl 0994.68131
[42] Oppy, G.: Gödelian ontological arguments. Analysis 56(4), 226-230 (1996) · Zbl 0943.03660
[43] Oppy, G.: Ontological Arguments and Belief in God. Cambridge University Press, Cambridge (2007)
[44] Peregrin, J., Svoboda, V.: Criteria for logical formalization. Synthese 190(14), 2897-2924 (2013) · Zbl 1284.03201
[45] Peregrin, J., Svoboda, V.: Reflective Equilibrium and the Principles of Logical Analysis: Understanding the Laws of Logic. Routledge Studies in Contemporary Philosophy. Taylor and Francis (2017)
[46] Quine, W.V.O.: Two dogmas of empiricism. In: Can Theories be Refuted?, pp. 41-64. Springer, Dordrecht (1976)
[47] Quine, W.V.O.: Word and Object. MIT Press, New York (2013) · Zbl 0093.00915
[48] Rawls, J.: A Theory of Justice. Harvard University Press, Cambridge (2009)
[49] Rushby, J.: The ontological argument in PVS. In: Proceedings of CAV Workshop “Fun With Formal Methods”. St. Petersburg, Russia (2013)
[50] Scott, D.: Appx.B: Notes in Dana Scott’s Hand, pp. 145-146. In: [50] (2004). http://books.google.de/books?id=ZQh8QJOQdOQC
[51] Sobel, J.: Logic and Theism: Arguments for and Against Beliefs in God. Cambridge University Press, New York (2004). http://books.google.de/books?id=ZQh8QJOQdOQC
[52] Tarski, A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.