×

zbMATH — the first resource for mathematics

Implementing the lattice Boltzmann model on commodity graphics hardware. (English) Zbl 07229875
MSC:
82 Statistical mechanics, structure of matter
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Buck I, Foley T, Horn D, Sugerman J, Fatahalian K, Houston M and Hanrahan P 2004 Brook for GPUs: stream computing on graphics hardware ACM Trans. Graph.23 777
[2] Fan Z, Kuo Y, Zhao Y, Qiu F, Kaufman A and Arcieri B 2009 Visual simulation of thermal fluid dynamics in a pressurized water reactor The Visual Computer online first doi:10.1007/s00371-008-0309-x
[3] Fan Z, Qiu F and Kaufman A 2008 Zippy: a framework for computation and visualization on a GPU cluster Comput. Graph. Forum27 341
[4] Fan Z, Zhao Y, Kaufman A and He Y 2005 Adapted unstructured LBM for flow simulation on curved surfaces ACM SIGGRAPH/EUROGRAPHICS Symp. on Computer Animation pp 245-54
[5] Fatahalian K, Knight T J, Houston M, Erez M, Horn D R, Leem L, Park J Y, Ren M, Aiken A, Dally W J and Hanrahan P 2006 Sequoia: programming the memory hierarchy ACM/IEEE Supercomputing Conf. p 4
[6] Harris M, Baxter W V, Scheuermann T and Lastra A 2003 Simulation of cloud dynamics on graphics hardware ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware pp 92-101
[7] Lallemand P and Luo L-S 2003 Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions Phys. Rev. E 68 036706
[8] Li W, Wei X and Kaufman A 2003 Implementing lattice Boltzmann computation on graphics hardware Vis. Comput.19 444
[9] Lowe C P and Succi S 2002 Go-with-the-Flow Lattice Boltzmann Methods for Tracer Dynamics (Berlin: Springer) · Zbl 1037.76046
[10] Mark W R, Glanville R S, Akeley K and Kilgard M J 2003 Cg: a system for programming graphics hardware in a C-like language ACM Trans. Graph.22 896
[11] McCool M, Du Toit S, Popa T, Chan B and Moule K 2004 Shader algebra ACM Trans. Graph.23 787
[12] Nguyen H 2007 GPU Gems 3 (Reading, MA: Addison-Wesley)
[13] Nieplocha J, Palmer B, Tipparaju V, Krishnan M, Trease H and Apra E 2006 Advances, applications and performance of the global arrays shared memory programming toolkit Int. J. High Perform. Comput. Appl.20 203
[14] NVIDIA 2008 Compute Unified Device Architecture Programming Guide Version 2.0, http://www.nvidia.com/object/cuda_develop.html
[15] Owens J D, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn A E and Purcell T J 2007 A survey of general-purpose computation on graphics hardware Comput. Graph. Forum26 80
[16] Pharr M and Fernando R 2005 GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation (Reading, MA: Addison-Wesley)
[17] Rost R J 2006 OpenGL Shading Language 2nd edn (Reading, MA: Addison-Wesley)
[18] Seiler L et al 2008 Larrabee: a many-core x86 architecture for visual computing ACM Trans. Graph.27
[19] St-Laurent S 2005 The Complete Effect and HLSL Guide (Redmond, WA: Paradoxal Press)
[20] Succi S 2001 The lattice Boltzmann equation for fluid dynamics and beyond Numerical Mathematics and Scientific Computation (Oxford: Oxford University Press) · Zbl 0990.76001
[21] Tam A T C and Wang C-L 2003 Contention-aware communication schedule for high-speed communication Cluster Comput.6 339
[22] Tölke J and Krafczyk M 2008 Towards three-dimensional teraflop CFD computing on a desktop PC using graphics hardware Technical Report Institute for Computational Modeling in Civil Engineering, TU Braunschweig
[23] Wei X, Zhao Y, Fan Z, Li W, Qiu F, Yoakum-Stover S and Kaufman A 2004 Lattice-based flow field modeling IEEE Trans. Vis. Comput. Graph.10 719
[24] Zhao Y, Han Y, Fan Z, Qiu F, Kuo Y, Kaufman A E and Mueller K 2007 Visual simulation of heat shimmering and mirage IEEE Trans. Vis. Comput. Graph.13 179
[25] Zhao Y, Qiu F, Fan Z and Kaufman A 2007 Flow simulation with locally-refined LBM ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games pp 181-8
[26] Zhao Y, Wei X, Fan Z, Kaufman A and Qin H 2003 Voxels on fire Proc. 14th IEEE Visualization doi:10.1109/VIS.2003.10009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.