zbMATH — the first resource for mathematics

La théorie de Kummer et le \(K_ 2\) des corps de nombres. (Kummer theory and \(K_ 2\) of number fields). (French) Zbl 0723.11051
The interpretation of the \(K_ 2\) of a number field, of the tame and the wild kernel in terms of Kummer theory via Kummer radicals was studied to a great extent by the author in his thesis, based upon earlier work of Tate, Coates and others. In the present paper the author develops a conceptual parallel for the description of genera, which yields a convenient framework for the study of various Tate-twisted Galois modules occurring in Iwasawa theory. In particular, the author reveals the close connection between results about \(K_ 2\) and the Conjectures of Leopoldt and Gross.

11R23 Iwasawa theory
11R70 \(K\)-theory of global fields
Full Text: DOI Numdam EuDML
[1] Artin, E. & Tate, J., “Class field theory,” Benjamin, New York-Amsterdam, 1967. · Zbl 0176.33504
[2] Bass, H., K2 des corps globaux, [d’après J. Tate, H. Garland...]Sém. Bourbaki, 23ème année (1970/71) n° 394. · Zbl 0307.12011
[3] Bertrandias, F. & Payan, J.-J., r-extensions et invariants cyclotomiques, Ann. Sc. Ec. Norm. Sup.5 (1972), 517-548. · Zbl 0246.12005
[4] Coates, J., On K2 and some classical conjectures in algebraic number theory, Ann. Math.95 (1972), 99-116. · Zbl 0245.12005
[5] Federer, L.J., The non-uanishing of Gross p-adic regulator Galois cohomologically, Astérisque147-148 (1987), 71-77. · Zbl 0614.12003
[6] Federer, L.J. & Gross, B.H.(avec un appendice de W. Sinnot), Regulators and Iwasawa modules, Inv. Math.62 (1981), 443-457. · Zbl 0468.12005
[7] Gillard, R., Formulations de la conjecture de Leopoldt et étude d’une condition suffisante, Abh. Math. Sem. Hamburg48 (1979), 125-138. · Zbl 0396.12008
[8] Gras, G., Plongements kummériens dans les Zp-extensions, Compositio Math.55 (1985), 383-395. · Zbl 0584.12004
[9] Gras, G. & Jaulent, J.-F., Sur le corps de nombres réguliers, Math. Z202 (1989), 343-365. · Zbl 0704.11040
[10] Greenberg, R., A note on K2 and the theory of Zp-extensions, Am. J. Math.100 (1978), 1235-1245. · Zbl 0408.12012
[11] Iwasawa, K., On Zl-extensions of number fields, Ann. of Math.98 (1973), 257-274. · Zbl 0285.12008
[12] Jaulent, J.-F., Sur les conjectures de Leopoldt et de Gross, Astérisque147-148 (1987), 107-120. · Zbl 0623.12003
[13] Jaulent, J.-F., L’arithmétique des l-extensions (thèse), Pub. Math. Fac. Sci. Besançon, Théor. Nombres1984- 85 et 1985-86, fasc.1 (1986), 1-349. · Zbl 0601.12002
[14] Jaulent, J.-F., Noyau universel et valeurs absolues, in Journées arithmétiques de Marseille Luminy, Prépublication. · Zbl 0756.11033
[15] Jaulent, J.-F. & Nguyen Quang do, T., Corps p-rationnels, corps p-réguliers, et ramification restreinte, Sém. Théorie des Nombres Bordeaux 1987-1988, exp. n° 10 (1988),. · Zbl 0748.11052
[16] Keune, F., On the structure of K2 of the ring of integers in a number field, Prépublication. · Zbl 0705.19007
[17] Kolster, M., On idelic approach to the wild kernel, Prépublication. · Zbl 0724.11056
[18] Kramer, K., On the Hilbert kernel of K-theory and the Gross regulator, Prépublication.
[19] Kramer, K. & Candiotti, A., On K2 and Zl-extensions of number fields, Am. J. Math.100 (1978), 177-193. · Zbl 0388.12004
[20] Mercurjev, A.-S. & Suslin, A.A., K-cohomology of Severi-Brauer varieties and norm residue homomorphism, Izv. AN SSSR46, NS (1982), 1011-1046. · Zbl 0525.18008
[21] Miki, H., On the maximal abelian l-extension of a finite algebraic number field with given ramification, Nagoya Math. J.70 (1978), 183-202. · Zbl 0398.12003
[22] Nguyen, T.Quang do, Sur la torsion de certains modules galoisiens p-ramifiés, Théorie des Nombres (Quebec, PQ,1987) 740-754 (1989), de Gruyter, Berlin-New York. · Zbl 0697.12009
[23] Nguyen, T.Quang do, Sur la torsion de certains modules galoisiens II, Sém. Théorie des NombresParis1986-87; Progress in Math.75 (1988), 271-298. · Zbl 0687.12005
[24] Tate, J., Symbols in arithmetics, Actes Congrès International Math.1 (1970), 201-211. · Zbl 0229.12013
[25] Tate, J., Letter from Tate to Iwasawa on a relation between K2 and Galois cohomology-Algebraic K-theory II, 342 (1973). · Zbl 0284.12004
[26] Tate, J., Relations between K2 and Galois cohomology, Invent. Math.36 (1976), 257-274. · Zbl 0359.12011
[27] Tate, J., Les conjectures de Stark sur les fonctions L d’Artin en s = 0, Progress in Math.47 (1984), Birkhäuser. · Zbl 0545.12009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.