zbMATH — the first resource for mathematics

Weierstrass points on arithmetic surfaces. (English) Zbl 0723.14019
Let C be a smooth, geometrically irreducible, curve of genus at \(least\quad 2,\) defined over a number field K. For K large enough, the regular minimal model \({\mathfrak X}\) of C over Spec(\({\mathfrak O}_ K)\) has semistable reduction and the ratio \(e(C)=(\omega \cdot \omega)/[K:{\mathbb{Q}}]\) is then independent of the choice of K, where \(\omega\) is the relative dualizing sheaf of \({\mathfrak X}\) over Spec(\({\mathfrak O}_ K)\) and (\(\omega\cdot \omega)\) is an Arakelov intersection product. By generalizing a method of Arakelov in the function field situation, we obtain a proof of the strict positivity of e(C) if the stable model has at least one reducible fiber or if the set of places of completely supersingular reduction is infinite. The method uses Weierstrass points and leads also to a proof of the boundedness of the average height of Weierstrass points of powers of a given line bundle on C.
Reviewer: J.-F.Burnol

14G40 Arithmetic varieties and schemes; Arakelov theory; heights
14H55 Riemann surfaces; Weierstrass points; gap sequences
Full Text: DOI EuDML
[1] [A1] Arakelov, S.: Families of curves with fixed degeneracy. Izv. Akad. Nauk SSSR, Ser. Mat.35, 1269-1293 (1971)
[2] [A2] Arakelov, S.: An intersection theory for divisors on an arithmetic surface. Izv. Akad. Nauk SSSR, Ser. Mat.38, 1179-1192 (1974)
[3] [A3] Arakelov, S.: Theory of intersections on the arithmetic surface. In: Proc. Int. Congr. Vancouver, 1974, pp. 405-408. Montreal: Can. Math. Congr. 1975
[4] [BLR] Bosch, S., L?tkebohmert, W., Raynaud, M.: N?ron Models. (Ergeb. Math. Grenzgeb., 3. Folge, Bd. 21) Berlin Heidelberg New York Tokyo: Springer 1990
[5] [BMM] Bost, J.B., Mestre, J.F., Moret-Bailly, L.: Sur le calcul explicite des ?Classes de Chern? des surfaces arithm?tiques de genre 2. In: S?minaire sur les pinceaux de courbes elliptiques ( ? la recherche de ?Mordell effectif?). (Ast?risque, vol. 183) Paris: Soc. Math. Fr. 1990
[6] [D] Deligne, P.: Le d?terminant de la cohomologie. (Contemp. Math. vol. 67) Providence, RI: Am. Math. Soc. 1987 · Zbl 0629.14008
[7] [F] Faltings, G.: Calculus on arithmetic surfaces. Ann. Math.119, 387-424 (1984) · Zbl 0559.14005 · doi:10.2307/2007043
[8] [KM] Knudsen, F., Mumford, D.: The projectivity of the moduli space of stable curves I: Preliminaries on ?det? and ?Div?. Math. Scand.39, 19-55 (1976) · Zbl 0343.14008
[9] [MB1] Moret-Bailly, L.: M?triques Permises. In: S?minaire sur les pinceaux arithm?tiques: La conjecture de Mordell. (Ast?risque, vol. 127) Paris: Soc. Math. Fr. 1985
[10] [MB2] Moret-Bailly, L.: La formule de Noether pour les surfaces arithm?tiques. Invent. Math.98, 491-498 (1989) · Zbl 0727.14014 · doi:10.1007/BF01393833
[11] [N1] Neeman, A.: The distribution of Weierstrass points on a compact Riemann surface. Ann. Math.120, 317-328 (1984) · Zbl 0598.14016 · doi:10.2307/2006944
[12] [N2] Neeman, A.: Weierstrass points in characteristic p. Invent. Math. 75, 359-376 (1984) · Zbl 0555.14009 · doi:10.1007/BF01388569
[13] [Si] Silverman, J.H.: Some arithmetic properties of Weierstrass points: Hyperelliptic curves. Bol. Soc. Bras. Mat.21 (No. 1), 11-50 (1990) · Zbl 0758.14023 · doi:10.1007/BF01236278
[14] [Sz] Szpiro, L.: Small points and torsion points. (Contemp. Math. vol. 58, pp. 251-260 Providence, RI: Am. Math. Soc. 1986
[15] [Z] Zhang, S.: Positive line bundles on arithmetic surfaces. Thesis, Columbia University, 1990
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.