# zbMATH — the first resource for mathematics

Threefolds of degree 9 and 10 in $${\mathbb{P}}^ 5$$. (English) Zbl 0723.14033
Let X be a smooth connected variety of dimension $$n\geq 2$$ with canonical bundle $$K_ X$$. Let L be a very ample line bundle on X. If the global sections of $$K_ X+(n-1)L$$ span it, then they determine a map $$\Phi: X\to {\mathbb{P}}^ m$$, called the adjunction map. A detailed study of adjunction maps has been done by A. J. Sommese (and also others) in a series of papers [e.g. in Complex analysis and algebraic geometry, Proc. Conf., Göttingen 1985, Lect. Notes Math. 1194, 175-213 (1986; Zbl 0601.14029)].
This paper carries it further $$(n=3)$$ to complete the classification of smooth threefolds X of degree 9 and 10 in $${\mathbb{P}}^ 5$$. For such an X, it is shown that dim($$\Phi$$ (X))$$\geq 2$$. If $$\dim(\Phi(X))\neq 3$$, then X is a $${\mathbb{P}}^ 1$$-bundle over a minimal $$K_ 3$$ surface, degree$$(X)=9$$, For $$\dim(\Phi(X))=3$$, the classification uses minimal reduction $$(X_ 0,L_ 0)$$ of (X,L); $$(X_ 0,L_ 0)$$ is shown to be either of log general type or a conic bundle over a surface. For each class, examples are constructed using liaison. They turn out to be unique examples with given invariants.
The classification of smooth threefolds of degree $$\leq 8$$ in $${\mathbb{P}}^ 5$$ has been done by C. Okonek [Manuscr. Math. 38, 175-199 (1982; Zbl 0534.14023)] and Ionescu independently.

##### MSC:
 14J30 $$3$$-folds 14J10 Families, moduli, classification: algebraic theory 14M06 Linkage
Full Text:
##### References:
 [1] Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of algebraic curves vol. I (Grundlehren, vol. 267). Berlin Heidelberg New York: Springer 1985 · Zbl 0559.14017 [2] Barth, W., Peters, C., Van de Ven, A.: Compact complex surfaces (Ergebnisse der Math. vol. 4). Berlin Heidelberg New York: Springer 1984 [3] Beauville, A.: Surfaces algébriques complexes. Astérisque54 (1978) · Zbl 0394.14014 [4] Beltrametti, M., Biancofiore, A., Sommese, A.J.: ProjectiveN-folds of log-general type I. Trans. Am. Math. Soc.314, 825-849 (1989) · Zbl 0702.14037 [5] Beltrametti, M., Sommese, A.J.: New properties of special varieties arising from the adjunction theory. preprint · Zbl 0754.14027 [6] Chang, M.C.: Classification of Buchsbaum subvarieties of codimension 2 in projective space. Crelle’s J.401, 101-112 (1989) · Zbl 0672.14026 [7] Fulton, W., Lazarsfeld, R.: Connectivity and its applications in algebraic geometry. Proceedings University of Illinois at Chicago Circle, 1980. (Lect. Notes Math. vol. 862). Berlin Heidelberg New York: Springer 1981 · Zbl 0484.14005 [8] Gruson, L., Peskine, C.: Genre des courbes de l’espace projectif. Algebraic geometry, Proceedings Tromsö, Norway 1977. (Lect. Notes Math. vol. 687) Berlin Heidelberg New York: Springer 1978 · Zbl 0412.14011 [9] Harris, J.: A bound on the geometric genus of projective varieties. Ann. Sc. Norm. Super. Pisa Cl. Sci., IV. Ser.8, 35-68 (1981) · Zbl 0467.14005 [10] Hartshorne, A.: Algebraic geometry. (G.T.M. vol. 52) Berlin Heidelberg New York: Springer 1977 · Zbl 0367.14001 [11] Ionescu, P.: Embedded projective varieties of small invariants. Proceedings of the Week of Algebraic Geometry, Bucharest 1982 (Lect. Notes Math. vol 1056) Berlin Heidelberg New York: Springer 1984 [12] Ionescu, P.: Generalized adjunction and applications, Math. Proc. Camb. Phil. Soc.99, 457-472 (1986) · Zbl 0619.14004 · doi:10.1017/S0305004100064409 [13] Ionescu, P.: Embedded projective varieties of small invariants, II. Rev. Roum. Math. Pures Appl.31, 539-544 (1986) · Zbl 0606.14038 [14] Ionescu, P.: Embedded projective varieties of small invariants, III. Preprint Series in Mathematics, n. 59/1988, Bucharest. · Zbl 0709.14023 [15] Iskovskih, V. A., Shokurov, V. V.: Biregular theory of Fano 3-folds, Proc. Alg. Geom., Copenhagen, 1978 (Lect. Notes Math. vol. 732, pp. 171-182), Berlin Heidelberg New York: Springer 1979 [16] Kawamata, Y.: The cone of curves of algebraic varieties. Ann. Math.119, 603-633 (1984) · Zbl 0544.14009 · doi:10.2307/2007087 [17] Livorni, E. L., Sommese, A. J.: Threefolds of non negative Kodaira dimension with sectional genus less than or equal to 15. Ann. Sc. Norm. Sup. Pisca. Cl. Sci. Ser. IV,13, 537-558 (1986) · Zbl 0636.14014 [18] Miyaoka, Y.: The Chern Classes and Kodaira Dimension of a Minimal Variety. Algebraic Geometry, Sendai 1985, 449-476. (Adv. Stud. Pure Math. vol. 10) Amsterdam: North Holland 1987 [19] Mori, S., Mukai, S.: Classification of Fano 3-folds withB 2-2, Manuscr. Math.36, 147-162 (1981) · Zbl 0478.14033 · doi:10.1007/BF01170131 [20] Mukai, S.: New classification of Fano threefolds and Fano manifolds of coidex 3, preprint (1988) [21] Okonek, C.: 3-Mannigfaltigkeiten imP 5 und ihre zugehörigen stabilen Garben, Manuscr. Math.38, 175-199 (1982) · Zbl 0534.14023 · doi:10.1007/BF01168590 [22] Okonek, C.: Über 2-codimensionale Untermannigfaltigkeiten vom Grad 7 inP 4 undP 5. Math. Z.187, 209-219 (1984) · Zbl 0575.14030 · doi:10.1007/BF01161705 [23] Okonek, C.: On codimension-2 submanifolds inP 4 andP 5. Math. Gottingensis, Schriftenr. Sonderforschungsbereichs. Geom. Anal.50 (1986) · Zbl 0603.14035 [24] Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Prog. Math.3 (1980) · Zbl 0438.32016 [25] Peskine, C.: Szpiro, L.: Liaison des variétés algébriques I. Invent. Math.26, 271-302 (1974) · Zbl 0298.14022 · doi:10.1007/BF01425554 [26] Ranestad, K.: On smooth surfaces of degree 10 in the projective fourspace. Preprint · Zbl 0827.14023 [27] Sommese, A. J.: Hyperplane sections of projective surfaces, I?The adjunction mapping. Duke Math. J.46, 377-401 (1979) · Zbl 0415.14019 · doi:10.1215/S0012-7094-79-04616-7 [28] Sommese, A. J.: Hyperplane sections, Proceedings of the Algebraic Geometry Conference, University of Illinois at Chicago Circle, 1980 (Lect. Notes Math. vol. 862, pp. 232-271). Berlin Heidelberg New York: Springer 1981 [29] Sommese, A. J.: Complex subspaces of homogeneous complex manifolds?II: Homotopy results. Nagoya Math. J.86, 101-129 (1982) · Zbl 0497.32026 [30] Sommese, A. J.: Ample divisors on Gorenstein varieties. Proceedings of Complex Geometry Conference, Nancy 1985. Rev. Inst. Cartan10, 104-125 (1986) · Zbl 0646.14007 [31] Sommese, A. J.: On the adjunction theoretic structure of projective varieties. Complex Analysis and Algebraic Geometry, Proceedings Göttingen 1985, (Lect. Notes Math. vol. 1194 pp. 175-213.) (1986) Berlin Heidelberg [32] Sommese, A. J.: On the nonemptiness of the adjoint linear system of a hyperplane section of a threefold. Crelle’s J.402, 211-220 (1989) · Zbl 0675.14005 [33] Sommese, A. J., Van de Ven, A.: On the adjunction mapping. Math. Ann.278, 593-603 (1987) · Zbl 0655.14001 · doi:10.1007/BF01458083 [34] Van de Ven, A.: On the 2-connectedness of very ample divisors on a surface. Duke Math. J.,46, 403-407 (1979) · Zbl 0458.14003 · doi:10.1215/S0012-7094-79-04617-9 [35] Wilson, P. M. H.: Towards birational classification of algebraic varieties. Bull. Lond. Math. Soc.19, 1-48 (1987) · Zbl 0612.14033 · doi:10.1112/blms/19.1.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.