×

zbMATH — the first resource for mathematics

A survey of canonical forms and invariants for unitary similarity. (English) Zbl 0723.15007
From the author’s abstract: “Matrices A and B are said to be unitarily similar if \(U^*AU=B\) for some unitary matrix U. This expository paper surveys results on canonical forms and invariants for unitary similarity.
The first half gives a detailed description of methods developed by several authors using inductively defined reduction procedures to transform matrices to canonical form. The matrix is partitioned and successive unitary similarities applied to reduce the submatrices to some nice form. At each stage, one refines the partition and restricts the set of permissible unitary similarities to those that preserve the already reduced blocks.
The process ends in a finite number of steps, producing both the canonical form and the subgroup of the unitary group that preserves that form. Depending on the initial step, various canonical forms may be defined. The method can also be used to define canonical forms relative to certain subgroups of the unitary group, and canonical forms for finite sets of matrices under simultaneous unitary smilarity.
The remainder of the paper surveys results on unitary invariants and other topics related to unitary similarity, such as the Specht-Pearcy trace invariants, the numerical range, and unitary reducibility.”
It remains for the reviewer to add that this is a conspicuously clear and well written survey. Unitary transformations over domains other than the complex field are excluded from consideration. On the other hand, some attention is paid in the concluding sections to generalizations to operators on Hilbert spaces. There is an extensive bibliography.
Reviewer: G.E.Wall (Sydney)

MSC:
15A21 Canonical forms, reductions, classification
15-02 Research exposition (monographs, survey articles) pertaining to linear algebra
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albert, A.A., On the orthogonal equivalence of sets of real symmetric matrices, J. math. and mech., 7, 219-235, (1958) · Zbl 0087.01203
[2] Arveson, W.B., Unitary invariants for compact operators, Bull. amer. math. soc., 76, 88-91, (1970) · Zbl 0196.14304
[3] Arveson, W.B., Subalgebras of C∗-algebras, Acta math., 123, 141-224, (1969) · Zbl 0194.15701
[4] Arveson, W.B., Subalgebras of C∗-algebras II, Acta math., 128, 271-308, (1972) · Zbl 0245.46098
[5] Arveson, W.B., An invitation to C∗-algebras, (1976), Springer-Verlag New York · Zbl 0344.46123
[6] L. autonne sur LES groupes linéaires, réels et orthogonaux, Bull. soc. math. France, 30, 121-134, (1902)
[7] Barker, G.P.; Eifler, L.Q.; Kezlan, T.P., A non-commutative spectral theorem, Linear algebra appl., 20, 95-100, (1978) · Zbl 0383.15006
[8] Bauer, F.L., On the field of values subordinate to a norm, Numer. math., 4, 103-113, (1962) · Zbl 0117.11004
[9] Benedetti, R.; Cragnolini, P., Versal families of matrices with respect to unitary conjugation, Adv. in math., 54, 314-335, (1984) · Zbl 0558.15003
[10] Bhattacharya, R., On the unitary invariants of an n × n matrix, ()
[11] Bonsall, F.F.; Duncan, J., Numerical ranges of operators on normed spaces and of elements of normed algebras, () · Zbl 0207.44802
[12] Brenner, J., The problem of unitary equivalence, Acta. math., 86, 297-308, (1951) · Zbl 0045.29705
[13] Brown, A., The unitary equivalence of binormal operators, Amer. J. math., 76, 144-434, (1954) · Zbl 0055.33902
[14] Browne, E.T., The characteristic roots of a matrix, Bull. amer. math. soc., 36, 705-710, (1930) · JFM 56.0103.07
[15] Burnside, W., On the condition of reducibility of any group of linear substitutions, Proc. lond. math. soc., 3, 2, 430-434, (1905) · JFM 36.0199.01
[16] Choi, M.-D., Completely positive linear maps on complex matrices, Linear algebra appl., 10, 285-290, (1975) · Zbl 0327.15018
[17] Coolidge, J.L., A treatise on algebraic plane curves, (1931), Oxford U.P., Oxford · JFM 57.0820.06
[18] Currie, J.C., Unitary-canonical matrices, Abstract 264, Bull. amer. math. soc., 56, 321, (1950)
[19] Deckard, D., Complete sets of unitary invariants for compact and trace-class operators, Acta sci. math. (Szeged), 28, 9-20, (1967) · Zbl 0156.15103
[20] Deckard, D.; Pearcy, C., On matrices over the ring of continuous complex valued functions on a Stonian space, Proc. amer. math. soc., 14, 322-328, (1963) · Zbl 0144.37703
[21] Deckard, D.; Pearcy, C., On continuous matrix-valued functions on a Stonian space, Pacific J. math., 14, 857-869, (1964) · Zbl 0172.41304
[22] Deckard, D.; Pearcy, C., On unitary equivalence of Hilbert-Schmidt operators, Proc. amer. math. soc., 16, 671-675, (1965) · Zbl 0144.37802
[23] Donoghue, W.F., On the numerical range of a bounded operator, Mich. math. J., 4, 261-263, (1957) · Zbl 0082.11601
[24] Drazin, M.P.; Dungey, J.W.; Gruenberg, K.W., Some theorems on commutative matrices, J. London math. soc., 26, 221-228, (1951) · Zbl 0043.25201
[25] Eckart, C.; Young, G., A principal axis transformation for non-Hermitian matrices, Bull. amer. math. soc., 45, 118-121, (1939) · JFM 65.0041.05
[26] Ernest, J., Charting the operator terrain, Mem. amer. math. soc., 6, No. 171, (1976) · Zbl 0331.47001
[27] Fan, K., A remark on orthagonality of eigenvectors, Linear and multilinear algebra, 23, 283-284, (1988) · Zbl 0659.47002
[28] Fiedler, M., Geometry of the numerical range of matrices, Linear algebra appl., 37, 81-96, (1981) · Zbl 0452.15024
[29] Friedland, S., A generalization of the Motzkin-taussky theorem, Linear algebra appl., 36, 103-109, (1981) · Zbl 0452.15003
[30] Friedland, S., Simultaneous similarity of matrices, Adv. in math., 50, 189-265, (1983) · Zbl 0532.15009
[31] Gaines, F.J.; Laffey, T.J.; Shapiro, H.M., Pairs of matrices with quadratic minimal polynomials, Linear algebra appl., 52⧸53, 289-292, (1983) · Zbl 0515.15006
[32] Gallagher, P.X.; Proulx, R.J., Orthogonal and unitary invariants of families of subspaces, (), 157-164 · Zbl 0369.15001
[33] Gantmacher, F.R.; Gantmacher, F.R., The theory of matrices, The theory of matrices, Vol. 2, (1959), Chelsea New York · Zbl 0085.01001
[34] Givens, W., Fields of values of a matrix, Proc. amer. math. soc., 3, 206-209, (1953) · Zbl 0048.25003
[35] Goldberg, M., On certain finite dimensional numerical ranges and numerical radii, Linear and multilinear algebra, 7, 329-342, (1979) · Zbl 0416.15015
[36] Goldberg, M.; Straus, E.G., Elementary inclusion relations for generalized numerical ranges, Linear algebra appl., 18, 1-24, (1977) · Zbl 0358.15005
[37] Gram, J.P., Ueber die entwickelung reeler functionen in reihen mittelst der methode der kleinsten quadrate, Crelles J., 94, 41-73, (1883) · JFM 15.0321.03
[38] Grunbaum, F.A., Simultaneous unitary equivalence, Linear and multilinear algebra, 4, 79-84, (1976) · Zbl 0372.15006
[39] Halmos, P., Finite-dimensional vector spaces, (1958), Van Nostrand Princeton · Zbl 0107.01404
[40] Halmos, P., A Hilbert space problem book, (1967), Van Nostrand Princeton · Zbl 0144.38704
[41] Hartwig, Robert E., The resultant and the matrix equation AX = SB, SIAM J. appl. math., 22, 538-544, (1972) · Zbl 0243.15008
[42] Hausdorff, F., Der wertvorrat einer bilinearform, Math. Z., 3, 314-316, (1919) · JFM 47.0088.02
[43] Herbut, F.; Loncke, P.; Vujicic, M., Canonical form for matrices under unitary congruence transformations II: congruence-normal matrices, SIAM J. appl. math., 26, 794-805, (1974) · Zbl 0285.15013
[44] Hong, Y.; Horn, R., On simultaneous reduction of families of matrices to triangular or diagonal form by unitary congruences, Linear and multilinear algebra, 17, 271-288, (1985) · Zbl 0568.15007
[45] Hong, Y.; Horn, R.; Johnson, C.R., On the reduction of pairs of Hermitian or symmetric matrices to diagonal form by congruence, Linear algebra appl., 73, 213-226, (1986) · Zbl 0593.15005
[46] Hong, Y.; Horn, R., A characterization of unitary congruence, Linear and multilinear algebra, 25, 105-119, (1989) · Zbl 0682.15010
[47] Horn, A., On the eigenvalues of a matrix with prescribed singular values, Proc. amer. math. soc., 5, 4-7, (1954) · Zbl 0055.00908
[48] Horn, R.; Johnson, C., Matrix analysis, (1985), Cambridge U.P., Cambridge · Zbl 0576.15001
[49] Horn, R.; Johnson, C., Topics in matrix analysis, (1990), Cambridge U.P., Cambridge
[50] Jacobson, N., Lectures in abstract algebra, () · Zbl 0053.21204
[51] Johnson, C.R., Normality and the numerical range, Linear algebra appl., 15, 89-94, (1976) · Zbl 0337.15019
[52] Kaluznin, L.A.; Havidi, H., Geometric theory of the unitary equivalence of matrices, Dokl. akad. nauk SSSR, Dokl. akad. nauk SSSR, 169, 1009-1012, (1966), English transl. of
[53] Kaplansky, I., Algebras of type I, Ann. of math., 56, 460-472, (1952) · Zbl 0047.35701
[54] Kippenhahn, R., Über den wertevorrat einer matrix, Math. nachr., 6, 193-228, (1952) · Zbl 0044.16201
[55] Laffey, T.J., Simultaneous quasidiagonalization of complex matrices, Linear algebra appl., 16, 189-201, (1977) · Zbl 0353.15030
[56] Laffey, T.J., A counterexample to kippenhahn’s conjecture on Hermitian pencils, Linear algebra appl., 51, 179-182, (1983) · Zbl 0539.15004
[57] Laffey, T.J., Simultaneous reduction of sets of matrices under similarity, Linear algebra appl., 84, 123-138, (1986) · Zbl 0609.15004
[58] Li, C.-K., Matrices with some extremal properties, Linear algebra appl., 101, 255-267, (1988) · Zbl 0659.15018
[59] Littlewood, D.E., On unitary equivalence, J. London math. soc., 28, 314-322, (1953) · Zbl 0050.25103
[60] McCoy, N.H., On the characteristic roots of matric polynomials, Bull. amer. math. soc., 42, 592-600, (1936) · Zbl 0015.05501
[61] MacDuffee, C.C., The theory of matrices, (1933), Springer-Verlag Berlin · Zbl 0007.19507
[62] McRae, V.V., On the unitary similarity of matrices, ()
[63] Marcus, M.; Andresen, P., Constrained extrema of bilinear functionals, Monatsh. math., 84, 219-235, (1977) · Zbl 0387.47006
[64] Marcus, M.; Filippenko, I., Nondifferentiable boundary points of the higher numerical range, Linear algebra appl., 21, 217-232, (1978) · Zbl 0393.15015
[65] Marcus, M.; Minc, H., A survey of matrix theory and matrix inequalities, (1964), Prindle, Weber & Schmidt Boston · Zbl 0126.02404
[66] Marcus, M.; Pesce, C., Computer generated numerical ranges and some resulting theorems, Linear and multilinear algebra, 20, 121-157, (1987) · Zbl 0626.65038
[67] Marcus, M.; Sandy, M., The G-bilinear range, Linear and multilinear algebra, 11, 317-322, (1982) · Zbl 0496.15016
[68] Mitchell, B.E., Normal and diagonalizable matrices, Amer. math monthly, 60, 94-96, (1953) · Zbl 0050.24904
[69] Mitchell, B.E., Unitary transformations, Canad. J. math, 6, 69-72, (1954) · Zbl 0055.00807
[70] Motzkin, T.S.; Taussky, O., Pairs of matrices with property L, Trans. amer. math. soc., 73, 108-114, (1952) · Zbl 0048.00905
[71] Motzkin, T.S.; Taussky, O., Pairs of matrices with property L, II, Trans. amer. math. soc., 80, 387-401, (1955) · Zbl 0067.25401
[72] Moyls, B.N.; Marcus, M.D., Field convexity of a square matrix, Proc. amer. math. soc., 6, 981-983, (1955) · Zbl 0066.26802
[73] Murnaghan, F.D., On the field of values of a square matrix, Proc. nat. acad. sci. U.S.A., 18, 246-248, (1932) · Zbl 0004.05003
[74] Murnaghan, F.D., On the unitary invariants of a square matrix, Proc. nat. acad. sci. U.S.A., 18, 185-189, (1932) · Zbl 0004.05002
[75] Murnaghan, F.D.; Wintner, A., A canonical form for real matrices under orthogonal transformations, Proc. nat. acad. sci. U.S.A., 17, 417-420, (1931) · Zbl 0002.11301
[76] Neudecker, H., A note on Kronecker matrix products and matrix equation systems, SIAM J. appl. math., 17, 603-606, (1969) · Zbl 0185.08204
[77] Nirschl, N.; Schneider, H., The Bauer fields of values of a matrix, Numer. math., 6, 355-365, (1964) · Zbl 0126.32102
[78] Parker, W.V., Characteristics roots and the field of values of a matrix, Duke math. J., 15, 439-442, (1948) · Zbl 0030.10203
[79] Parker, W.V., Sets of complex numbers associated with a matrix, Duke math. J., 15, 711-715, (1948) · Zbl 0031.14803
[80] Parker, W.V., A note on normal matrices, Amer. math. monthly, 61, 330-331, (1954) · Zbl 0055.24501
[81] Paulsen, V., Continuous canonical forms for matrices under unitary equivalence, Pacific J. math., 76, 129-142, (1978) · Zbl 0497.15006
[82] Paz, A., An application of the Cayley-Hamilton theorem to matrix polynomials in several variables, Linear and multilinear algebra, 15, 161-170, (1984) · Zbl 0536.15007
[83] Pearcy, C., A complete set of unitary invariants for operators generating finite W∗-algebras of type I, Pacific J. math., 12, 1405-1416, (1962) · Zbl 0144.37801
[84] Pearcy, C., A complete set of unitary invariants for 3 × 3 complex matrices, Trans. amer. math. soc., 104, 425-429, (1962) · Zbl 0117.01604
[85] Pearcy, C., On unitary equivalence of matrices over the ring of continuous complex-valued functions on a Stonian space, Canad. J. math., 15, 323-331, (1963) · Zbl 0144.37704
[86] Pearcy, C.; Ringrose, J.R., Trace-preserving isomorphisms in finite operator algebras, American J. math., 90, 444-455, (1968) · Zbl 0169.17503
[87] Primrose, E., Plane algebraic curves, (1955), Macmillan London · Zbl 0068.14501
[88] Procesi, C., The invariant theory of n × n matrices, Adv. in math., 19, 306-381, (1976) · Zbl 0331.15021
[89] Radjavi, H., On unitary equivalence of arbitrary matrices, Trans. amer. math. soc., 104, 363-373, (1962) · Zbl 0103.25103
[90] Radjavi, H., Simultaneous unitary invariants for sets of matrices, Canad. J. math., 20, 1012-1019, (1968) · Zbl 0164.03303
[91] Radjavi, H.; Rosenthal, P., Matrices for operators and generators of B(H), J. London math. soc., 2, 2, 557-560, (1970) · Zbl 0197.10801
[92] Röseler, H., Normalformen von matrizen gegenüber unitären transformationen, () · JFM 58.1016.02
[93] Rotman, J., The theory of groups, (1973), Allyn and Bacon Boston · Zbl 0262.20001
[94] Salmon, G., A treatise on the higher plane curves, (1879), Hodges, Foster, and Figgis Dublin
[95] Schmidt, E., Zur theorie der linearen und nichtlinearen intergralgleichungen, Math. ann., 63, 433-476, (1907)
[96] Schur, I., Beiträge zur theorie der gruppen linearer homogener substitutionen, Trans. amer. math. soc., 10, 159-175, (1909) · JFM 40.0181.01
[97] Schur, I., Über die charakteristischen wurzeln einer linearen substitution mit einer anwendung auf die theorie der integralgleichungen, Math. ann., 66, 488-510, (1909) · JFM 40.0396.03
[98] Schwartz, J.T., W-∗algebras, (1967), Gordon and Breach New York · Zbl 0185.38701
[99] Sergeĭchuk, V.V., Classification of linear operators in a finite-dimensional unitary space, Functional anal. appl., 18, 3, 224-230, (1984) · Zbl 0556.15007
[100] Shapiro, H., Simultaneous block triangularization and block diagonalization of sets of matrices, Linear algebra appl., 25, 129-137, (1979) · Zbl 0401.15008
[101] Shapiro, H., On a conjecture of kippenhahn about the characteristic polynomial of a pencil generated by two Hermitian matrices. I, Linear algebra appl., 43, 201-221, (1982) · Zbl 0487.15006
[102] Shapiro, H., A conjecture of kippenhahn about the characteristic polynomial of a pencil generated by two Hermitian matrices. II, Linear algebra appl., 45, 97-108, (1982) · Zbl 0495.15007
[103] Shapiro, H., Hermitian pencils with a cubic minimal polynomial, Linear algebra appl., 48, 81-103, (1982) · Zbl 0515.15005
[104] Shapiro, H.; Taussky, O., Alternative proofs of a theorem of moyls and Marcus on the numerical range of a square matrix, Linear and multilinear algebra, 8, 337-340, (1980) · Zbl 0429.15009
[105] Sherman, S.; Thompson, C.J., Equivalence on eigenvalues, Indiana univ. math. J., 21, 807-814, (1972) · Zbl 0222.15009
[106] Sibirskiǐ, K.S., Unitary and orthogonal invariants of matrices, Soviet math dokl., Dokl. akad. nauk SSSR, 172, 40-43, (1967)
[107] Smith, R.R.; Ward, J.D., Matrix ranges for Hilbert space operators, Amer. J. math., 102, 1031-1081, (1980) · Zbl 0456.47010
[108] Specht, W., Zur theorie der gruppen linearer substitutionen, Jahresber. Deutsch. math.-verein, 47, 43-55, (1937) · JFM 63.0076.01
[109] Specht, W., Zur theorie der gruppen linearer substitutionen, II, Jahresber Deutsch. math.-verein, 49, 207-215, (1939) · JFM 66.0085.03
[110] Specht, W., Zur theorie der matrizen, II, Jahresber. Deutsch. math.-verein, 50, 19-23, (1940) · JFM 66.0043.01
[111] Spencer, A.J.M., Theory of invariants, (), 239-353
[112] Stinespring, W.F., Positive functions on C∗-algebras, Proc. amer. math. soc., 6, 211-216, (1955) · Zbl 0064.36703
[113] Sylvester, J.J.; Sylvester, J.J., Sur l’equation en matrices px = xq, C. R. acad. sci. Paris, C. R. acad. sci. Paris, 99, 115-116, (1884) · JFM 16.0125.01
[114] Taussky, O., Commutativity in finite matrices, Amer. math. monthly vn64, 229-235, (1957) · Zbl 0081.25002
[115] Taussky, O., A weak property L for pairs of matrices, Math. Z., 71, 463-465, (1959) · Zbl 0088.25202
[116] Taussky, O., On the congruence transformation of a pencil of real symmetric matrices to a pencil with identical characteristic polynomial, Linear algebra appl., 52⧸53, 687-691, (1983) · Zbl 0515.15004
[117] Taussky, O.; Wielandt, H., Linear relations between higher additive commutators, Proc. amer. math. soc., 13, 732-735, (1962) · Zbl 0112.01701
[118] Thompson, R.C., Singular values, diagonal elements and convexity, SIAM J. appl. math., 32, 39-63, (1977) · Zbl 0361.15009
[119] Toeplitz, O., Das algebraische analogon zu einem satze von fejer, Math. Z., 2, 187-197, (1918) · JFM 46.0157.02
[120] Tsing, N.-K., The constrained bilinear form and the C-numerical range, Linear algebra appl., 56, 195-206, (1984) · Zbl 0528.15007
[121] Turnbull, H.W.; Aitken, A.C., An introduction to the theory of canonical matrices, (1932), Blackie London · Zbl 0005.19303
[122] Van Dooren, P.M., On the use of unitary state-space transformations, (), 447-463
[123] Veselic, K., On the Jordan form in a unitary space, Linear algebra appl., 8, 507-514, (1974) · Zbl 0298.15008
[124] Vujičić, M.; Herbut, F.; Vujičić, G., Canonical form for matrices under unitary congruence transformations I: conjugate-normal matrices, SIAM J. appl. math., 23, 225-238, (1972) · Zbl 0242.15003
[125] Wall, G.E., On the conjugacy classes in the unitary, symplectic, and orthogonal groups, J. austral. math. soc., 3, 1-62, (1963) · Zbl 0122.28102
[126] Waterhouse, William C., A conjectured property of Hermitian pencils, Linear algebra appl., 51, 173-177, (1983) · Zbl 0516.15006
[127] Watters, J.F., Simultaneous quasi-diagonalization of normal matrices, Linear algebra appl., 9, 103-117, (1974) · Zbl 0292.15004
[128] Wegner, U., Über die frobeniusschen kovarianten, Monatsh. math. u. phys., 40, 201-208, (1933) · Zbl 0007.05201
[129] Westwick, R., A theorem on numerical range, Linear and multilinear algebra, 2, 311-315, (1975) · Zbl 0303.47001
[130] Weyl, H., Inequalities between the two kinds of eigenvalues of a linear transformation, Proc. nat. acad. sci. U.S.A., 35, 408-411, (1949) · Zbl 0032.38701
[131] Weyr, E., Répartition des matrices en espèces et formation de toutes LES espèces, C.R. acad. sci. Paris, 100, 966-969, (1885) · JFM 17.0109.02
[132] Weyr, E., Zur theorie der bilinearen formen, Monatsh. math. u. phys., 1, 163-236, (1890) · JFM 22.0141.02
[133] Wiegmann, N., A note on pairs of normal matrices with property L, Proc. amer. math. soc., 4, 35-36, (1953) · Zbl 0050.01101
[134] Wiegmann, N., Necessary and sufficient conditions for unitary similarity, J. austral. math. soc., 2, 122-126, (1962) · Zbl 0104.01003
[135] Williamson, J., A polar representation of singular matrices, Bull. amer. math soc., 41, 118-123, (1935) · JFM 61.0072.01
[136] Wintner, A.; Murnaghan, F.D., On a polar representation of non-singular square matrices, Proc. nat. acad. sci. U.S.A., 17, 676-678, (1931) · Zbl 0003.19303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.